

I

Prospero

c
VDI Bindings
September 1990

Prospero Software
Jf LANGUAGES FOR MICROCOMPUTER PROFESSIONALS

COPYRIGHT

Copyright © 1988, 1990 Prospero Software. All rights reserved.

This document is copyright and may not be reproduced by any method,
translated, transmitted, or stored in a retrieval system without prior written
permission of Prospero Software.

Permission is granted to Prospero C licence holders to abstract and use any
of the programming examples.

DISCLAIMER

While every effort is made to ensure accuracy, Prospero Software cannot be
held responsible for errors or omissions, and reserve the right to revise this
document without notice.

TRADEMARKS

Acknowledgement is made for references in this manual to Microsoft and
MS, which are trademarks of Microsoft Corp., to IBM, which is a
trademark of International Business Machines Corp., to Apple and
Macintosh, which are trademarks of Apple Computer Inc., to Digital
Research and GEM, which are trademarks of Digital Research Inc., to
Amstrad and Amstrad PC, which are trademarks of Amstrad Consumer
Electronics pic, to Atari and Atari ST, which are trademarks of Atari Corp.,
to Motorola and MC68000, which are trademarks of Motorola Inc., and to
Intel, which is a trademark of Intel Corp.

Prospero C, Pro Fortran-77, Prospero Fortran, Pro Pascal and Prospero
Pascal are trademarks of Prospero Software.

Prospero Software, Inc. Prospero Software Ltd.
100 Commercial Street, Suite 306 190 Castelnau
Portland, Maine 04101 London SW13 9DH
U.S.A England

I

I

I

I

I

I

Contents

TABLE OF CONTENTS

1 Introduction to GEM VDI

2 Using GEM VDI

3 VDI Control Functions

3.1 Open Workstation
Open Virtual Screen Workstation

3.2 Close Workstation
Close Virtual Workstation

3.3 Clear Workstation
3.4 Update Workstation
3.5 Load Fonts

3.6 Unload Fonts

3.7 Set Clipping Rectangle

4 VDI Output Functions

4.1 Output Polyline
4.2 Output Polymarker
4.3 Output Text
4.4 Output Filled Area
4.5 Output Cell Array
4.6 Contour Fill

4.7 Output Filled Rectangle
4.8 Output Bar
4.9 Output Arc

Output Pieslice
4.10 Output Circle
4.11 Output Elliptical Arc

Output Elliptical Pieslice
4.12 Output Ellipse
4.13 Output Rounded Rectangle

Output Filled Rounded Rectangle
4.14 Output Justified Text

5 VDI Attribute Functions

1 Set Writing Mode
2 Set Color Representation
3 Set Line Type
4 Set User Defined Line Style
5 Set Line Width

6 Set Line Color

7 Set Line End Styles
8 Set Marker Type
9 Set Marker Height

v opnwk 7

v opnvwk 7

v clswk 13

v clsvwk 13

v clrwk 15

v updwk 16

vst load fonts 17

vst unload_fonts 19

vs clip 21

2 3

v pline 25

v pmarker 27

v gtext 29

v fillarea 31

v cellarray 33

v contourfill 36

vr recfl 38

v bar 40

v arc 42

v pieslice 42

v circle 44

v ellarc 46

v ellpie 46

v ellipse 48

v rbox 50

v rfbox 50

vjustified 52

5 4

vswr mode 56

vs color 59

vsl type 61

vsl udsty 63

vsl width 65

vsl color 67

vsl ends 69

vsm type 71

vsm height 73

Contents

5.10 Set Marker Color vsm_color 75

5.11 Set Text Height vst height 77

vst_point 77

5.12 Set Character Baseline Vector vst rotation 80

5.13 Select Character Font vst font 82

5.14 Set Text Color vstcolor 84

5.15 Set Text Effects vst_effects 86

5.16 Set Graphic Text Alignment vst alignment 88

5.17 Set Fill Interior Style vsf interior 91

5.18 Set Fill Style Index vsf style 93

5.19 Set Fill Color Index vsf color 96

5.20 Set Fill Perimeter Visibility vsf_perimeter 98

5.21 Set User Defined Fill Pattern vsf_udpat 100

6 VDI Raster Functions 103

6.1 Copy Raster Opaque vrocpyfm 104

6.2 Copy Raster Transparent vrt cpyfm 108

6.3 Transform Form vr trnfm 111

6.4 Get Pixel v_get_pixel 113

7 VDI Input Functions 115

7.1 Set Input Mode vsin mode 117

7.2 Input Locator vrq locator 119

vsm locator 119

7.3 Input Valuator vrq valuator 122

vsm valuator 122

7.4 Input Choice vrq choice 125

vsm choice 125

7.5 Input String vrq_string 127

vsm_string 127

7.6 Set Mouse Form vsc form 130

7.7 Exchange Timer Vector vex timv 132

7.8 Show and Hide Cursor v show c 134

v hide c 134

7.9 Sample Mouse State vq_mouse 136

7.10 Exchange Button Change Vector vex butv 138

7.11 Exchange Mouse Travel Vector vex motv 140

7.12 Exchange Cursor Draw Vector vex curv 142

7.13 Sample Keyboard State vq key s 144

8 VDI Inquire Functions 146

8.1 Extended Inquire vq_extnd 147

8.2 Inquire Color Representation vqcolor 151

8.3 Inquire Line Attributes vql attributes 153

8.4 Inquire Marker Attributes vqm attributes 155

8.5 Inquire Fill Attributes vqf attributes 157

I

I

I

[

I

I

I

I

I

!

Contents

8.6 Inquire Text Attributes
8.7 Inquire Text Extent
8.8 Inquire Character Cell Width
8.9 Inquire Font Name and Index
8.10 Inquire Cell Array
8.11 Inquire Input Mode
8.12 Inquire Font Info
8.13 Inquire Justified Graphic Text

VDI Escapes

9.1 Inquire Alpha Character Cells
9.2 Exit Alpha Mode
9.3 Enter Alpha Mode
9.4 Move Alpha Cursor

9.5 Home Alpha Cursor
9.6 Erase to End of Alpha Screen
9.7 Erase to End of Alpha Line
9.8 Set Alpha Cursor Address
9.9 Output Alpha Text
9.10 Select Alpha Text Style

9.11 Inquire Alpha Cursor Address
9.12 Inquire Tablet Status
9.13 Hardcopy
9.14 Place and Remove Graphic Cursor

9.15 Form Advance

9.16 Output Window to Printer
9.17 Clear Printer Display List
9.18 Output Bit Image File

9.19 Inquire Printer Scan Heights
9.20 Output Printer Alpha Text
9.21 Select Palette

9.22 Generate Tone

9.23 Set/Clear Muting Flag
9.24 Set Tablet Resolution

9.25 Set Tablet Origin
9.26 Inquire Tablet Dimensions
9.27 Set Tablet Alignment
9.28 Select Camera Film Type
9.29 Inquire Camera Film Name

vqt_attributes
vqt_extent
vqt_width
vqt_name
vqcellarray
vqinmode
vqtfontinfo
vqtjustified

159

161

163

165

167

170

172

174

176

vq_chcells 179
vexitcur 181

v_enter_cur 182
vcurup 183
v_curdown 183
v_curright 183
v_curleft 183
v_curhome 184
v_eeos 185
v_eeol 186
vs_curaddress 187
v_curtext 188
vrvon 189

v_rvoff 189
vq_curaddress 190
vqtabstatus 191
v_hardcopy 192
vdspcur 193
v_rmcur 193
vformadv 194

v_output_window 195
v_clear_disp_list 197
v_bit_image_J 198
v_bit_image_2 198
vq_scan 202
v_alpha_text 204
vs_palette 206
v_sound 207
vs_mute 208
vt_resolution 210
vt_axis 210
vt_origin 212
vq_tdimensions 213
vt_alignment 214
vsp_film 216
vqp_filmname 218

Contents

9.30 Disable or Enable Film Exposure vsc expose 220
9.31 Inquire Film Types vqpfilms 221
9.32 Inquire and Set Palette Driver State vqp_state 223

vsp_state 223
9.33 Save Palette Driver State vsp save 226
9.34 Suppress Palette Messages vsp message 227
9.35 Palette Error Inquire vqperror 228
9.36 Update Metafile Extents vmeta extents 230
9.37 Write Metafile Item v write meta 231
9.38 Change GEM VDI Filename vm_filename 233

10 Index of Functions 234

I * Section 1 -Introduction to GEM VDI VDI-1

' 1 INTRODUCTION TO GEM VDI
I GEM VDI, Prospero C, and the Bindings

What is GEM VDI? Why should you want to use it? Why do you need bindings
before you can do so, and why should these bindings require such a large
amount of explanation in order to be used?

VDI stands for Virtual Device Interface - in other words, an interface to an
imaginary, idealized device rather than to any particular real piece of
hardware. Interfacing to an imaginary device rather than a real one makes
more sense than might be immediately apparent, as all such imaginary devices
can be made to look the same and work in the same way, whereas real devices
always have different resolutions, numbers of colors, hardware arrangements,
and codes required to drive them - come to that, some of them are screens,
others are printers, others are graphics tablets, others are plotters and so on. If
you write a program to drive a particularreal device using its own codes, then
it is more than likely that the program will need a lot of alterations before it
will work on a different real device. So programs can be made more portable
if they interface to a virtual device, then allow the virtual device to drive the
real one.

I

I

I

I

I

I

I

I

I

GEM VDI is the successor to a previous device-independent graphics system
known as GSX. It incorporates all the graphical operations that an application
might be expected to require of any graphics device, and causes them to have
the same effect (as far as possible) regardless of the actual device in question.
Clearly some portion of GEM VDI will need to be device dependent, and
different for every device that is attached - this portion is known as the device
driver, and comes as a separate file so that drivers are only loaded into
memory when output to a particulardevice is attempted. Drivers are available
for most popular graphics hardware, and many are provided with the GEM
Desktop when it is installed on a computer.

In order to call the routines provided by GEM VDI. a program must set up
various memory areas with appropriate values, load a pointer to these memory
areas into a register, then issue a particular software interrupt to cause the
GEM VDI code to be entered. Such things are easily achieved when writing in
assembler language, but to use GEM VDI from a high level language such asC,
a number of functions callable from C have been provided which set up the
relevant memory areas and pointers, then cause the interrupt to be issued.
These bindings can then be linked with a C program to make an executable
application.

VDI-2 Section 1 - Introduction to GEM VDI

The header file VDIBIND.H supplied with Prospero C contains definitions of
various C typesused in the GEM VDI bindings. Many of these are described in
the functions where they are used - however, the type WORD is used widely
throughout the VDI bindings :-

typedef short int WORD; /* Used for all integer values */

for example

WORD handle;

WORD coord;

WORD point[2];
WORD rect[4];

/* twopoints, defining diagonally opposite corners of a rectangle */

/* a workstation handle */

/* a screen coordinate */

/* a coordinate pair */

The low level interface to GEM VDI need not usually concern the C
programmer - all such details are handled by the bindings as transparently as
possible. However the following may be of interest in some circumstances -
further information can be found in the GEM Programmer's Toolkit,
available from Digital Research.

GEM VDI is enteredby a software interrupt, with the address of a parameter
block contained in a register. This parameterblock contains the addressesof 5
arrays through which information is passed to and from GEM VDI, and is
declared as an external structure as follows :-

typedef WORD *LONG;

extern struct VDI_parmblock
{ LONG addr_control;
LONG addr_intin;
LONG addr_ptsin;
LONG addr_intout;
LONG addr_ptsout;

} VDIparm;

For every call to GEM VDI, the fields of this structure must contain pointers
to thearrays. Rather than set them upevery time a GEM VDI call is made, they
are initialized at program startup to point to five arrays, also declared as
external, intowhich information is placed by eachbinding.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

^* Section 1-Introduction to GEM VDI VDI-3
The five arrays are declared as follows :-

extern WORD VDI_control[12];
extern WORD VDI_intin[80];
extern WORD VDI_intout[80] ;
extern WORD VDI_ptsin[12];
extern WORD VDI_ptsout[12];

The above declarations are provided in VDIBIND.Hin case you should want to
use them in a program. Note that the above names must not be used for any
other externally linked objects in a program which uses GEM VDI.

The VDi_control array is used for each GEM call to indicate which GEM
VDI routine is required, and how many parameters are being passed in the
other arrays in the following elements :-

0 - the function number required
1 - the number of points passed in the VDi_ptsin array
2 - the number of points returned in the VDlptsout array
3 - the number of values passed in the VDl_intin array
4 - the number of values returned in the VDI_intout array
5 - the sub-opcode for a GDP or Escape function (see sections 4 and 9)
6 - the device handle for the function

Some functions also use elements 7 to 11 of this array.

The VDl_intin arraycontains two-byte integervalues to be used by the VDI.
In general, all numbers, flags, characters and so on (other than coordinates)
passed as parameters to the bindings are copied into the required position in
this array. When strings are passed, the ASCII code of each character in turn is
normally converted to a two-byte value and placed in this array. Thus the
definitions above limit the maximum string which can be passed to 80
characters, of which one is the terminating null character. In certain
circumstances it may be advantageous to increase the memory reserved for the
VDi_intin array. This can be done by including in an application program
definitions of the form

extern WORD VDI_control[12]
extern WORD VDI_intin [nn]
extern WORD VDI^intout [80]
extern WORD VDI_ptsin [12]
extern WORD VDI_ptsout [12]

extern struct VDI_parmblock VDIparm
{ &VDI_control,
&VDI_intin, &VDI_ptsin,
&VDL intout, &VDI_ptsout };

VDI-4 Section 1 -Introduction to GEM VDI

Note that all five arrays and the VDIparm structure must be defined if you are
going to define any, and none should be given smaller sizes than those given
above unless you are very confident that the extra words are not required by
any of the bindings you use.

The VDi_intout array is used to return two-byte values from VDI
functions, which are then copied into the relevant parameters or function
result by the bindings when values are to be returned.

The VDl_ptsin and VDl_ptsout arrays are used to pass coordinate pairs to
and from GEM VDI - even elements contain x coordinates, with the
corresponding y coordinate in the succeeding odd element. Where an array of
points is passed (for example v_pline in section 4.1) the elements are not
copied into this array, but the pointer to the array in the VDIparm record is
temporarily adjusted. Thus the definition of these arrays as having 12 elements
does not limit polylines to 6 vertices, but simply reflects the maximum number
of points which the bindings need to copy into or out of these arrays.

~z Section 2 -Using GEM VDI VDI-5

2 USING GEM VDI

GEM VDI consists of a number of routines designed to be used for graphical
output to devices, in such a way that programs can be written to be independent
of the actual device beingused. Thus the samefunction call can be expected to
cause the same output whether the device in question is a screen, a plotter, or
whatever. In order to achieve this, a separate driver is provided for each
supported device, and loaded into memory when that device is to be used. One
particular "device" which is supported is the Metafile - this is a record on disk
of all the GEM VDI functions called, which therefore behaves as a generic
description of a generated picture. The picture can then be sent to a device or
used by another application at a later date.

GEM VDI considers each device to be a "workstation", and once the
workstation is opened, and the relevant device driver loaded, all workstations
will behave in a similar manner regardless of the device. It is only when
opening a workstation that the program specifies which physical device is
associated with that workstation - from then on the workstation is referred to
only by its handle. Each workstation is independentof any other workstations
currently in use, so that for example altering the line width or the clipping
rectangle for one will not affect the subsequent output of another.

Two coordinate systems are available in GEM VDI - Normalized Device
Coordinates (NDC) and Raster Coordinates (RC). The program must specify
when a workstation is opened which coordinate system is to be used for that
workstation. Normalized DeviceCoordinatesare scaled so that the display area
of any device has a coordinate range of 0 to 32767 in both x and y directions,
with the origin at the bottom left hand corner (as in standard Cartesian
coordinates). The advantage of using the NDC system is that it is independent
of the resolution of the device - the point (16384, 16384) will be in the middle
of a display whether it is a 640x400 screen or a 300 dots per inch laserwriter
(resolution about 2500x3500 pixels). Raster coordinates correspond to the
actual pixels of the device, and range from (0,0) in the top left hand corner to a
device dependent maximum x and y coordinate, equal to the pixel resolution
minus one. Raster coordinates are less portable than NDC coordinates, but
more efficient to plot, as no scaling is required. If raster based operations, such
as movement of blocks of pixels (see section 6) are to be used, the RC
coordinate system will be the natural choice.

Rectangles in GEM VDI are always specified by giving the coordinates of two
diagonally oppositecorners,usually but not necessarily the top left and bottom
right corners. This contrasts with the AES where rectangles are specified by
giving the coordinatesof the top left hand corner together with the rectangle's
width and height. The coordinates are passed in an array[4] of WORD. For
some routines, the coordinates of two such rectangles are specified in an
array[8] of WORD.

VDI-6 Section 3 -VDI Control Functions

3 VDI CONTROL FUNCTIONS

This section contains descriptions of the bindings for the various VDI control
functions, in the following sub-sections.

Section Function description Binding name

3.1 Open Workstation v opnwk
Open Virtual Workstation v_opnvwk

3.2 Close Workstation vclswk

Close Virtual Workstation v_clsvwk

3.3 Clear Workstation vclrwk

3.4 Update Workstation vupdwk

3.5 Load Fonts vst__load_fonts

3.6 Unload Fonts vst_unload_fonts

3.7 Set Clipping Rectangle vs_clip

The functions in this section are mainly concerned with housekeeping. They
are generally used at the beginning or end of a program or part of a program
involving the use of a particular "workstation" - a GEM term for a display
screen, printer, plotter or any other input or output device with which it has to
work. Generally all workstations are treated in a consistent way; when an
application opens a workstation GEM returns a number, called a handle, by
which the workstation is identified. Whenever the application uses this
workstation, it must give this handle as the first parameter. GEM thereafter
interprets whatever you do in terms of the particular device's capabilities.

Section 3 -VDI Control Functions VDI-7

3.1 Open Workstation v_opnwk
Open Virtual Screen Workstation v_opnvwk

Before GEM can work with a device, such as a Screen, Plotter, Printer,
Metafile, Camera, or Tablet it has to have access to information about the
device. This information is placed in a special file on disk called a device
driver. One of the secrets of GEM's success is that all the information that
GEM needs to know about the particular printer, plotter or whatever is in
one place; by changing the device driver alone GEM can then work with a
different device - another manufacturer's printer, a laserprinter that can do
both printing and plotting. In this way old software can ran with new
hardware by the simple addition of a new device driver. Device drivers are
supplied by Digital Research or hardware manufacturers; a large number of
drivers for popular peripherals are included with the GEM Programmer's
Toolkit. These two functions are used to open the device driver files.

3.1.1 Definition

The Prospero C definitions of Open Workstation and Open Virtual Screen
Workstation are:

void v_opnwk(WORD work_in[ll],
WORD *handle,
WORD work_out[57]);

void v^opnvwk(WORD work_in[ll],
WORD *handle,
WORD work out [57]);

3.1.2 Purpose

These functions load and initialize a device driver, and return various
information about the driver and its capabilities, and an identifying "handle"
to be used when referring to the workstation in future VDI calls. Open
Virtual Screen Workstation allows several virtual workstations to be opened
for a single screen device - each virtual screen workstation has access to the
entire screen, with an independent set of attributes (line width, fill style,
etc.) and clipping rectangle. Note that virtual screen workstations should not
use sample mode for input functions (see section 7) as GEM cannot tell for
which virtual workstation input is intended.

~y vdi-
3.1.3 Parameters

Parameter Type of
name parameter

Section 3 -VDI Control Functions

Parameter description
Function of parameter

workin WORD[11] Initial attributes etc.

The parameter workin is an array of 11
two-byte integers whose meanings are as
follows :-

work_in[0] Device number of required workstation, as
listed in ASSIGN.SYS. Device numbers are

allocated as follows :-

I - 10 Screen devices

II - 20 Plotters

21 - 30 Printers

31-40 Metafile

41-50 Cameras

51-60 Tablets

work_in [l] Initial line type (see section 5.3).

work_in [2] Initial line color (see section 5.6).

work in [3] Initial marker type (see section 5.8).

workin [4] Initial marker color (see section 5.10).

work_in [5] Initial text font (see section 5.13).

work_in [6] Initial text color (see section 5.14).

work_in [7] Initial fill interior style (see section 5.17).

work_in [8] Initial fill style index (see section 5.18).

work_in [9] Initial fill color index (see section 5.19).

Section 3 -VDI Control Functions VDI-9

work__in[10] Transformation flag :-

0- use normalized device coordinates

(NDC) to address the device, so that
0,0 refers to the lower left corner,
and 32767,32767 refers to the upper
right corner.

1 - reserved for future use.

2- use raster coordinates (RC) to
address the device, so that (0,0)
refers to the top left corner, and
(maxx,maxy) refers to the lower
right corner, where maxx and maxy
are the number of pixels supported
in the horizontal and vertical

directions, which can be obtained by
examining the values returned in
work_out[0] and work_out[1].

For further information on suitable values, see
the relevant set attributes function in section 5.

The value 1 can safely be used for all of
work_in[1] to work_in[9].

handle WORD * Device handle

This points to the object used to return the
device handle which GEM has allocated to the

workstation just opened, which should be used
as the first parameter to all subsequent GEM
VDI calls for this workstation. A handle of

zero indicates that the workstation could not

be opened.

When opening a virtual screen workstation,
the screen must have been opened as a physical
workstation first, and the handle of the
physical screen workstation should be passed
to v_opnvwk in the object pointed to by this
parameter, which will be modified by GEM
before returning.

~7 VDI-IQ Section 3-VDI Control Functions
workout WORD[57] Workstation information

This parameter is an array of 57 two-byte
integers into which the function will write
information about the device which may be
useful to the application :-

work_out [0] Maximum addressable pixel in x axis (number
of pixels- 1)

work_out [1] Maximum addressablepixel in y axis

work_out [2] 0- device capable of producing a precisely
scaled image (e.g. a printer or plotter)

1 - not capable (e.g. a film recorder)

work_out [3] Width of a pixel in microns (1000 microns = 1
mm)

work_out [4] Height of a pixel in microns

work_out[5] Number of character heights available (0
means continuous scaling)

work_out [6] Number of line types available

work_out[7] Number of line widths available (0 means
continuous scaling)

workout [8] Number of marker types available

work_out [9] Number of marker heights available (0 means
continuous scaling)

work_out [10] Number of faces (fonts) supported by device

work_out [11] Number of fill patterns available

work-out [12] Number of hatch styles available

workout [13] Number of predefined colors (the number of
colors which the device can display
simultaneously)

2 indicates a monochrome device.

work out [14] Number of GDPs (see section 4)

Section 3 -VDI Control Functions VDI-11

I

I

work_out[15] to
work out [24]

work-out[25] to
work out [34]

work_out[35]

work_out[36]

work_out[37 1

work_out[38]

J work_out[39]

work_out[4 0]

work_out[4 1]

work_out[42]

work-out[43]

work out [44]

A list of those GDPs supported. There can be
up to 10, as listed in section 4. The list is
terminated by a value of -1, in which case any
values of work_out between this value and
work out [2 4] are undefined.

A list describing which set of attributes is
associated with each GDP in the above list :-

0 : line attributes

1 : marker attributes

2: text attributes

3 ; fill attributes

4 : no attributes

color capability (0 = no, 1 = yes)

text rotation capability (0 = no, 1 = yes)

area fill capability (0 = no, 1 = yes)

cell array capability (0 = no, 1 = yes)

number of colors available in palette :-

0 means continuous (>32767 colors)
2 means monochrome

Number of locator devices available (1 means
keyboard only)

Number of valuator devices available (1
means keyboard only)

Number of choice devices available (1 means

keyboard function keys only).

Number of string devices available

Workstation type :-

0 : output only
1 : input only
2 : input/output
3 : reserved

4 : metafile output

~7 VDI-12
work_out[45]

work_out [46]

work-out [47]

work out [48]

work_

work_

work_

work_

work

work

work

work

out[49]

out[50]

out [51]

out [52]

out[53]

out [54]

out [55]

out[56]

3.1.4 Example

WORD work_in[11];
WORD work-out[57];
int i;

WORD screen_handle,

main ()

{

for (i=0; i<10; i++)

work_in[i] = 1; /* Set initial attributes */
work_in[10] = 2; /* Use raster coordinates */
v_opnwk(work_in, &screen_handle, work_out);
if (screen_handle == 0) exit(3); /* Abort */
work_in[3] = 2; /* different attributes */
work_in[10] = 0; /* Use NDC coordinates here */
v_screen_handle = screen_handle;
v_opnvwk(work_in, &v_screen_handle, work_out);
/* The two workstations can now be used, with

independent sets of attributes, clipping rectangles
and so on */

Section 3 -VDI Control Functions

Minimum character width in x axis

Minimum character height in y axis

Maximum character width in x axis

Maximum character height in y axis.

The above values are all in the current

coordinate system. Note that these do not
include inter-character or inter-line spacing.

Minimum line width in x axis

0 (not used)

Maximum line width in x axis

0 (not used)

Minimum marker width in x axis

Minimum marker height in y axis

Maximum marker width in x axis

Maximum marker height in y axis

v screen handle;

I

I

I

I

I

Section 3 -VDI Control Functions VDI-13

3.2 Close Workstation v_clswk
Close Virtual Workstation v_clsvwk

When GEM has finished using a device opened with Open Workstation or
Open Virtual Screen Workstation (see section 3.1) it must be closed, to make
the workstation handle available for reuse by another application, and to
release the memory in which the GEM VDI device driver stored the current
settings of all the attributes. These two functions close a workstation
previously opened with v_opnwk or v_opnvwk .

3.2.1 Definition

The Prospero C definitions of Close Workstation and Close Virtual
Workstation are :

void v_clswk(WORD handle);
void v_clsvwk(WORD handle);

3.2.2 Purpose

This function is used to terminate output to a device, allowing the device to
close properly and freeing the device handle for re-use by GEM. Closing a
virtual screen workstation simply frees the workstation handle and its
associated handle for reuse by GEM VDI. Closing a physical workstation will
cause the device to tidy up as follows :-

Screen - return to alpha mode
Plotter - perform update
Printer - perform update
Metafile - write end of file and close the file
Camera - perform update

All virtual screen workstations associated with a physical screen workstation
should be closed before using v_clswk.

~7 VDI-14
3.2.3 Parameters

Parameter Type of
name parameter

Section 3 -VDI Control Functions

Parameter description
Function of parameter

handle WORD Device handle

This is the handle of the workstation or virtual
workstation to be closed. No VDI calls using
this handle should be made after a v_clswk or
a v clsvwk call.

3.2.4 Example

WORD screen_handle,
WORD work_in[11];
WORD work out [57] ;

other handle;

main()

{
v_opnwk(work_in, &screen_handle, work_out);
other_handle = screen_handle;
v_opnvwk(work__in, &other_handle, work_out);
/* lots of GEM VDI calls using screen handle,

other handle */

/* close virtual workstation */

v_clsvwk(other_handle);
v_clswk(screen_handle); /* finished */

}

I

I

I

Section 3 -VDI Control Functions VDI-15

3.3 Clear Workstation v_clrwk

Clear Workstation is used to clear a workstation ready for further output. The
precise effect depends upon the nature of the device.

3.3.1 Definition

The Prospero C definition of Clear Workstation is :

void v clrwk(WORD handle);

3.3.2 Purpose

This function is used to clear the specified workstation. The precise effect of
this depends upon the nature of the device as follows :-

Screen - clear entire screen to background color - color index
zero (see section 5).

Plotter - clear output buffer
D Printer - clear output buffer and issue a form feed. See also

v_form_adv in section 9.
Metafile - write Clear Workstation code to the metafile.

Camera - clear device to current background.

I

I

I

I

I

Note that Open Workstation (v_opnwk) will cause a device to be cleared
when it is opened. However Open Virtual Screen Workstation (vopnvwk)
does not.

Note also that v_clrwk clears the printer or plotter buffer; normally a
program should call vupdwk (see section 3.4) first to print or plot the
contents of the buffer.

3.3.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

handle WORD Device handle

The handle of the device to be cleared.

3.3.4 Example

WORD screen_handle;

/* Open screen device, do some output */
v clrwk(screen handle); /* Clear the screen */

~7 VDI-16 Section 3 -VDI Control Functions

3.4 Update Workstation v_updwk

When outputting graphics to a printer, the image can only be produced from
the top of the page downwards. In order to print complex graphical images,
the entire image must therefore be known before any output is made to the
printer. GEM VDI printer drivers therefore maintain a buffer describing all
output that has been sent to the printer, which is not actually transferred to
paper until the program indicates that the image is complete by calling this
function. This will output the image currently contained in the buffer, and
advance to the next page. The contents of the buffer will not be erased, so that
subsequent VDI output to the printer will add to the current buffer contents.
For screen devices, all VDI output is immediately placed on the screen, and
therefore this function has no effect.

3.4.1 Definition

The Prospero C definition of Update Workstation is:

void v_updwk(WORD handle);

3.4.2 Purpose

This function causes all pending output to be performed immediately. Plotter
and printer devices have a buffer to which all output is sent, which will not be
output to the device itself until this command is issued. Note that no form feed
will be issued before the output is sent to the printer- v_clrwk (section 3.2)
or v_form_adv (section 9.15) can be used for this purpose.

This functioncauses a metafile device to output an Update Workstation code.

3.4.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

handle WORD Device handle

The handle of the device to be updated.

3.4.4 Example

WORD printer_handle;

/* Open printer device, and output picture to it */

/* Cause the picture to be printed */
v^updwk(printer_handle);

Section 3 -VDI Control Functions VDI-17

3.5 Load Fonts vst load fonts

Load Fonts is used to load any external fonts which a device can use to output
text. Most devices have a built in (system) font which remains available for use
at all times, and additional external fonts, with a wider choice of letter styles,
held in disk files so that they do not occupy memory unless they are required.
Certain device drivers, notably printers, do not have a system font, and
therefore require external fonts to be loaded before any GEM VDI text output
may be sent to them.

The external fonts available for each device are listed in the ASSIGN.SYS file.

| 3.5.1 Definition
The Prospero C definition of Load Fonts is :

| WORD vst_load_fonts(WORD handle, WORD select);

I

I

I

3.5.2 Purpose

This function is used to load the external fonts associated with the specified
workstation's driver in the ASSIGN.SYS file. It is not necessary to load
external fonts if the device's system font is all that is required - however,
printer devices do not have system fonts, so a font must be loaded using
vst_load_fonts before text can be output to a printer.

3.5.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose external fonts

are to be loaded.

select WORD Reserved

This parameter is reserved for future use. A
value of zero should be passed.

VDI-18 Section 3 -VDI Control Functions

3.5.4 Function Result

This function returns a two-byte integer value which indicates the number of
extra fonts loaded.

3.5.5 Example

WORD printer_handle;
WORD number of fonts;

/* Open printer device */

number_of_fonts = vst_load_fonts(printer_handle, 0)
/* Select Swiss font */
vst_font (printer__handle, 2);
/* Text may now be output to the printer */

Section 3 -VDI Control Functions VDI-19

3.6 Unload Fonts vst unload fonts

External fonts loaded using the function vst_load_fonts (section 3.5)
occupy a large amount of memory, especially as no means exists of only
loading the ones that are required. When a font is no longer required Unload
Fonts should be used to release memory allocated for the external fonts.

3.6.1 Definition

The Prospero C definition of Unload Fonts is:

void vst_unload_fonts(WORD handle, WORD select);

3.6.2 Purpose

This function is used to free the memory allocated for external fonts loaded by
the function vst_load_font s (see section 3.5), when those fonts are no
longer required. If fonts are shared between several virtual workstations, the
memory will not be released until all virtual workstations have released it.
Fonts are automatically released when a workstation is closed.

After this call has been made, the external fonts are no longer available. The
device's system font(s) will still be available.

3.6.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose external fonts

are to be unloaded.

select WORD Reserved

This parameter is reserved for future use. A
value of zero should be passed.

"7 VDI-20
3.6.4 Example

WORD printer_handle;
WORD number of fonts;

/* Open printer device */

Section 3 -VDI Control Functions

number_of_fonts = vst_load_fonts(printer_handle, 0);
/* Select Swiss font */

vst_font(printer_handle, 2);
/* Text may now be output to the printer */

/* release font memory */
vst_unload_fonts(printer_handle, 0);
/* Can still send graphics to printer, but no text */

I

I

I

I

I

I

Section 3 -VDI Control Functions VDI-21

3.7 Set Clipping Rectangle vs_clip

In GEM it is frequently useful to restrict graphics output to a particular
portion of a workstation, for example to avoid overwriting the borders of a
window or other windows. Set Clipping Rectangle provides this facility, and
also enables or disables clipping of GEM VDI output.

3.7.1 Definition

The Prospero C definition of Set Clipping Rectangle is :

void vs_clip(WORD handle, WORD clipflag,
WORD pxyarray[4]);

3.7.2 Purpose

This function is used to set the clipping rectangle of the specified workstation.
All subsequent GEM VDI output will be clipped, so that only those portions
which lie within the specified rectangle are output. It can also be used to enable
or disable clipping.

The function vqextnd (section 8.1) can be used to discover the current
clipping rectangle (in GEM version 2.0 only)

VDI-22

3.7.3 Parameters

Parameter Type of
name parameter

handle WORD

clipflag WORD

pxyarray WORD[4]

Section 3 -VDI Control Functions

Parameter description
Function of parameter

Device handle

The handle of the device whose clipping
rectangle is being set.

Clipping enable/disable

If this is 1, clipping is enabled using the
specified clipping rectangle. If 0, no clipping
takes place (this is the default state when a
workstation is opened).

Clipping rectangle

This parameter specifies the rectangle which is
used to clip output to the device. The rectangle
is defined by the coordinates in the current
coordinate system (NDC or RC) of two
diagonally opposite corners.

3.7.4 Example

WORD screen_handle;
WORD my_output_area[4];

my_output_area[0] = 100; /* x coord */
my_output_area[1] = 100; /* y coord */

/* Top left hand corner of rectangle */

my_output_area[2] = 400; /* x coord */
my__output_area [3] = 200; /* y coord */

/* Bottom right hand corner of rectangle */

/* Switch clipping on */
vs_clip(screen handle, 1, my_output area);

I

7 Section 4- VDI Outut Functions VDI-23
I

[

I

I

4 VDI OUTPUT FUNCTIONS

This section contains descriptions of the bindings for the GEM VDI output
functions, in the following sub-sections.

Section Function Description Binding Name

4.1 Output Polyline v_pline

4.2 Output Polymarker v_pmarker

4.3 Output Text v_gtext

4.4 Output Filled Area v_fillarea

4.5 Output Cell Array v_cellarray

4.6 Contour Fill vcontourf ill

4.7 Output Filled Rectangle vr_recfl

4.8 Output Bar v_bar

v arc4.9 Output Arc

I

Output Pieslice v_pieslice

4.10 Output Circle v_circle

I

4.11 Output Elliptical Arc v_ellarc
Output Elliptical Pieslice v_ellpie

4.12 Output Ellipse v_ellipse

4.13 Output Rounded Rectangle v_rbox
Output Filled Rounded Rectangle v_rfbox

I

I

4.14 Output Justified Text vjustified

VDI-24 Section 4 - VDI Outut Functions

VDI Output functions are provided to output graphical objects or text to a
device. Several of these output functions are known as Generalized Device
Primitives (GDPs). These need no special treatment by a programmer - the
main difference is the manner in which the bindings have to be written.
However, when a workstation is opened, information about the available GDPs
is returned in the work out array - see section 3.1 for further information.
The GDPs are as follows;

1 v_bar section 4.8
2 v_arc section 4.9
3 v_pieslice section 4.9
4 v_circle section 4.10
5 v_ellipse section 4.12
6 v_ellarc section4.11
7 v_ellpie section 4.11
8 v_rbox section 4.13
9 v_rfbox section 4.13
10 v_justified section 4.14

When using one of the GEM VDI output functions, the manner in which the
output appears depends upon the current setting of the relevant attributes -
these are described in detail in section 5. Each output function is affected by a
particular set of attributes - there are four sets of attribute functions, which
affect the output of lines, markers, filled areas and text. The set of attributes
relevant for each function is specified in the section describing that function -
the attribute set applying to each GDP (see above) is also specified in the values
returned in work-out when a workstation is opened. All output functions are
also affectedby the current writing mode set by vswr_mode (section5.1), and
the current clipping rectangle set using vs__clip (section 3.7).

I

I

I

I

I

I

I

I

I

Section 4 - VDI Outut Functions VDI-25

4.1 Output Polyline v_pline

GEM groups all graphics made up of lines into one function - the Polyline.
This can be one line, two at any angle, three lines making up a triangle (or any
line with three segments - the polyline need not form a closed figure). A large
number of short lines may be used to draw what appears to be a curve, so that
an entire graph may be drawn in one operation.

4.1.1 Definition

The Prospero C definition of Output Polyline is :

void v_pline(WORD handle, WORD count,
WORD xyarray []) ;

4.1.2 Purpose

This function is used to output a polyline to the specified device. A polyline
consists of a series of straight lines joining the points contained in the array.
The lines are drawn using the current line attributes and writing mode . For
more information see the following functions :

Set Writing Mode
Set Line Type
Set User Defined Line Style
Set Line Width

Set Line Color

Set Line Ends

4.1.3 Parameters

vswr_mode
vsl_type
vsl_udsty
vsl_width
vslcolor

vsl ends

Parameter Type of
name parameter

Parameter description
Function of parameter

(see section 5.1)
(see section 5.3)
(see section 5.4)
(see section 5.5)
(see section 5.6)
(see section 5.7)

handle WORD Device handle

The handle of the device to which the polyline is
to be output.

^7 VDI-26 Section 4 - VDI Outut Functions

count WORD Number of vertices

This parameter specifies how many vertices
make up the polyline. A single vertex
(count = l) will not cause any output. The
function vq_extnd (see section 8.1) can be
used to discover the maximum number of

vertices supported by this device.

xyarray WORD[] Vertices of polyline

This parameter contains the coordinates of each
vertex of the polyline. Each vertex is specified
by consecutive pairs of elements of xyarray: a
line is drawn between each consecutive pair of
vertices, up to the second last and last vertices.
Thus count-1 lines are drawn.

The array should contain twice as many
elements as count.

All coordinates are in the current coordinate

system (NDC or RC).

Lines of zero length are displayed as points.

4.1.4 Example

WORD my_line[14] ;
WORD screen_handle;
int i;

for (i =0; i < 7; i++)

{ /* A simple line graph */
my_line[i*2] = 100 + 10*i;
my_line[i*2 + 1] = 200 - i*i;

/* Output the line */
v_pline(screen handle, 7, my_line)

I

I

I

I

i

I

I

I

I

Section 4 - VDI Outut Functions VDI-27

4.2 Output Polymarker v pmarker

A marker is a dot, cross, triangle or other symbol that marks a point. A
polymarker is a like a polyline (see section 4.1) except that it only shows
markers at the points specified, rather than the lines joining the points. The
most obvious use for Output Polymarker is to place markers on a line graph by
using it after Output Polyline with the same xyarray. It can also be used to
produce so-called scatter graphs, which only have points marked.

4.2.1 Definition

The Prospero C definition of Output Polymarker is :

void v_pmarker(WORD handle, WORD count,
WORD xyarray []);

4.2.2 Purpose

This function is used to output a number of markers to the specified device.
The markers are drawn using the current marker attributes and writing mode
as follows :-

Set Writing Mode
Set Marker Type
Set Marker Height
Set Marker Color

4.2.3 Parameters

Parameter Type of
name parameter

vswr mode

vsm_type

vsm_height
vsm color

Parameter description
Function of parameter

(see section 5.1)
(see section 5.8)
(see section 5.9)
(see section 5.10)

handle WORD Device handle

The handle of the device to which the markers

are to be output.

count WORD Number of markers

This parameter specifies how many markers are
to be output. The function vq_extnd (see
section 8.1) can be used to discover the
maximum number of markers supported by this
device.

VDI-28 Section 4 - VDI Outut Functions

xyarray WORD[] Vertices of polymarker

This parameter contains the coordinates of each
marker to be output. Each marker is specified
by two consecutive elements, so xyarray has
twice as many elements as count.

All coordinates are in the current coordinate

system (NDC or RC).

4.2.4 Example

WORD marker_array[14];
WORD screen_handle;
int i;

for (i = 0; i < 7; i++)

{ /* A simple scatter graph */
marker_array[2*i] = 100 + 10*i;
marker_array[2*i + 1] = 200 - i*i;

}
/* Output the markers */

v_pmarker(screen_handle, 7, marker_array);

I

I

I

I

I

I

I

I

I

I

I

I

Section 4 - VDI Outut Functions VDI-29

4.3 Output Text v_gtext

This routine is the basic text output function; using it a program can place any
string of text at any position on a screen - or any other device. The size, color
and style of the text can also be varied.

4.3.1 Definition

The Prospero C definition of Output Text is :

void v_gtext(WORD handle, WORD x, WORD y,
const char *astring);

4.3.2 Purpose

This function is used to output a text string to the specified device. The text is
output using the current text attributes - see the following functions :-

Set Text Height
Set Text Height (in points)
Set Character Baseline Vector

Select Character Font

Set Text Color

Set Text Effects

vst_height
vst_point
vst_rotation
vst_font
vst_color
vst effects

(see section 5.11)
(see section 5.11)
(see section 5.12)
(see section 5.13)
(see section 5.14)
(see section 5.15)

Set Graphic Text Alignment vst_alignment (see section 5.16)

Note that if a device driver does not have a system font, an external font will
have to be loaded and selected (see vst_load_fonts in section 3.5) before
any text output can be made - this often applies to printer device drivers.

VDI-30

4.3.3 Parameters

Parameter Type of
name parameter

handle WORD

WORD

WORD

Section 4 - VDI Outut Functions

Parameter description
Function of parameter

Device handle

The handle of the device to which the text is to

be output.

X coordinate

Y coordinate

The x and y coordinates at which the text is to be
output, in the current coordinate system.

See the vst_a-lignment function in section
5.16 for information on how these coordinates

relate to the position where the text is displayed.

astring const char* Text

The text to be output.

4.3.4 Example

WORD screen handle;

/* Open screen workstation */
v_gtext(screen_handle, 100, 50, "This is some text'

I

1

I

Section 4 - VDI Outut Functions VDI-31

4.4 Output Filled Area v fillarea

Filled polygons can be used to create graphics, area graphs, backgrounds or
whatever, and is the fastest way to produce large areas of color or pattern. For
rectangular or square areas, it will be easier to use vr_recf1 or v_bar (see
sections 4.7 and 4.8).

4.4.1 Definition

The Prospero C definition of Output Filled Area is:

void v_fillarea(WORD handle, WORD count,
WORD xyarray []) ;

4.4.2 Purpose

This function is used to output a filled polygon to the specified device. The
polygon is defined by a set of vertices - there is no restriction on how complex
the polygon may be (e.g. convex or concave, self-intersecting etc.). The
polygon is filled using the current fill area attributes and writing mode - see
the following functions for more information:-

Set Writing Mode
Set Fill Interior Style
Set Fill Style
Set Fill Color Index

Set Fill Perimeter Visibility
Set User Defined Fill Pattern

vswr_mode
vsf_interior
vsf_style
vsf_color
vsf perimeter

vsf_udpat

(see section 5.1)
(see section 5.17)
(see section 5.18)
(see section 5.19)
(see section 5.20)
(see section 5.21)

If the device is not capable of area fill, only the outline will be drawn in the
current fill area color.

A polygon of zero area will be displayed as a dot if the fill perimeter visibility
(see vsf_perimeter in section 5.20) is enabled, otherwise it will not be
displayed at all.

~7 VDI-32 Section 4 - VDI Outut Functions

4.4.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD

count WORD

xyarray WORD[]

4.4.4 Example

WORD triangle[]

WORD screen handle;

Device handle

The handle of the device to which the polygon is
to be output.

Number of vertices

This parameter specifies how many vertices
make up the polygon. A single vertex
(count=l) will not cause any output.

The function vq_extnd (section 8.1) can be
used to discover the maximum number of

vertices supported by this device.

Vertices of polygon

This parameter contains the coordinates of each
vertex of the polygon. Each vertex is described
by two consecutive elements in xyarray and so
this array contains twice as many elements as
count.

All coordinates are in the current coordinate

system (NDC or RC).

{ 100, 200,

200, 200,

150, 300 };

/* Output filled triangle */
v_fillarea(screen_handle, 3, triangle)

I

1

I

I

I

Section 4 - VDI Outut Functions VDI-33

4.5 Output Cell Array v_cellarray

This function can be thought of as a kind of knitting pattern; it works with a
rectangular area, divided into equal size cells, and the color of each of the cells
in the rectangle can be specified by an element of an array. It can thus be used
to produced colored patterns as simple or as sophisticated as the program
design requires.

4.5.1 Definition

The Prospero C definition of Output Cell Array is :

void v_cellarray(WORD handle, WORD xyarray[4],
WORD row_length, WORD el_used,
WORD num_rows, WORD wrt_mode,
WORD colarray []) ;

4.5.2 Purpose

This function is used to output a rectangular area to the device, divided into a
number of cells each of whose color is specified by the corresponding element
of an array. Each pixel in the rectangle will be set to the color index given by
the array element corresponding to the cell which covers the pixel's centre.

Not all devices support cell array output - if a device does not support cell
arrays, it will return a value of zero in work_out [38] when the device is
opened with v_opnwk or v_opnvwk (section3.1). If this function is used on a
device which does not support cell arrays, the rectangle will be outlined using
the current line attributes.

^ VDI-34
4.5.3 Parameters

Parameter Type of
name parameter

handle WORD

Section 4 - VDI Outut Functions

Parameter description
Function of parameter

Device handle

The handle of the device to which the cell array
is to be output.

xyarray W0RD[4] Rectangle

row_length WORD

el used WORD

num rows WORD

The rectangle to which the cell array is to be
output, in the standard GEM VDI format of the
coordinates of two diagonally opposite corners.

Color array row length

The number of elements in each row of the

color index array.

Elements per row

The number of elements from each row which

are to be used, and therefore the number of cells
into which the rectangle is to be divided
horizontally. This should be no greater than
row_length - if it is less, some values at the
end of each row will be ignored.

Color array row count

The rows to be used in the color index array.
This should be no greater than the number of
rows declared in the array declaration If it is
less, any elements of the array after the last row
used will be ignored. This parameter controls
the number of rows of cells into which the
rectangle will be divided.

I

I

I

I

I

I

I

I

Section 4 - VDI Outut Functions VDI-35

wrtmode WORD Pixel writing mode

The writing mode to be used when outputting
the pixels. This function does not use the current
writing mode as set by vswr_mode (see section
5.1), but requires the writing mode to be
specified every time it is called. The possible
values have the same meaning as in the function
vswr_mode :-

1 - replace mode
2 - transparent mode
3 - XOR mode

4 - reverse transparent

See section 5.1 for further details.

colarray WORD[] Color array

The array containing the color index values to
be used for each cell. The array should contain
at least row_length * num_rows elements,
each of type WORD. The individual cell colors
can then be specified as colarray [v *
row_length + h] where v and h give the
row and column of the required cell.

4.5.4 Example

WORD colors [12] ;

WORD screen_handle;
int i, j;
WORD rect[] = (10, 10, 50, 70};

for (i=0; i<3; i++)

for (j=0; j<4; j++)
colors[i*4 + j] = i + j;

/* A rather dull pattern */

/* Output 2 by 3 cells to rectangle */
v_cellarray(screen_handle, rect, 4, 2, 3, 1,

colors) ;

VDI-36 Section 4 - VDI Outut Functions

4.6 Contour Fill v_contourfill

A contour fill or 'flood fill' operation may be visualized as tipping a bucket of
paint into a space in a drawing; the space, however large it is, is filled with an
even color or pattern. There must be a solid boundary around the area to be
flooded, or it will leak out and cover the whole drawing. Indeed a flood fill is a
good way to add a background to all except closed areas. It is not generally
useful for filling behind text because it does not fill inside closed letters such as
a, o, p, d etc.

4.6.1 Definition

The Prospero C definition of Contour Fill is :

void v_contourfill(WORD handle, WORD x, WORD y,
WORD index);

4.6.2 Purpose

This function is used to perform a 'flood fill' on the specified device. This is
rather like pouring paint into a puddle - it will spread until it reaches a barrier.
The barrier in this case is a pixel of the color specified by the parameter
index - if these do not form a complete barrier then paint will leak out, and
fill the entire device area.

The area is filled using the current fill area attributes and writing mode - see
the following functions for more information:

Set Writing Mode vswr_mode (see section 5.1)
Set Fill Interior Style vsf_interior (see section 5.17)
Set Fill Style vsf_style (see section 5.18)
Set Fill Color Index vsf_color (see section 5.19)
Set User Defined Fill Pattern vsf_udpat (see section 5.21)

This function is not supported by all devices - vq_extend (section 8.1) may
be used to discover whether a device driver is capable of this.

I

I

I

I

I

I

I

Section 4 - VDI Outut Functions VDI-37

4.6.3 Parameters

Parameter Type of
name parameter

handle

index

WORD

WORD

WORD

WORD

4.6.4 Example

WORD screen handle;

Parameter description
Function of parameter

Device handle

The handle of the device where the flood fill is

to be performed.

X coordinate

Y coordinate

The x and y coordinates of the point at which the
flood fill is to start.

All coordinates are in the current coordinate

system (NDC or RC).

Boundary color index

This is the color index which is to define the

boundary at which the flood filling is to stop. A
negative value will cause any pixel whose color
does not match that of the starting point to be
considered as part of the boundary.

/* Output a few lines, arcs etc. to form a boundary*/
v contourfill(screen handle, 100, 100, -1);

~7 VDI-38 Section 4 - VDI Outut Functions

4.7 Output Filled Rectangle vr recfl

As a simpler alternative to v_f illarea (section 4.4), this function can be
used to output filled rectangular areas. The perimeter of the rectangle is never
drawn.

4.7.1 Definition

The Prospero C definition of Output Filled Rectangle is :

void vr recfl(WORD handle, WORD xyarray[4;

4.7.2 Purpose

This function is used to output a filled rectangle to the specified device. The
rectangle is filled using the current fill area attributes and writing mode,
except for the fill perimeter visibility, which is always disabled. See the
following functions for more information :-

Set Writing Mode
Set Fill Interior Style
Set Fill Style
Set Fill Color Index

Set User Defined Fill Pattern

vswr_mode
vsf_interior
vsf_style
vsf_color
vsf udpat

(see section 5.1)
(see section 5.17)
(see section 5.18)
(see section 5.19)
(see section 5.21)

NB. This function is similar to vbar (section 4.8), except that v_bar does
use the fill perimeter visibility flag and can therefore be used to draw
rectangles with the border marked.

I

I

I

I

Section 4 - VDI Outut Functions VDI-39

4.7.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

handle WORD Device handle

The handle of the device to which the rectangle
is to be output.

xyarray WORD[4] Rectangle

This parameter defines the rectangle to be
output, in the standard VDI rectangle format of
two diagonally opposite corners.

All coordinates are in the current coordinate
system (NDC or RC).

4.7.4 Example

WORD rect[4] = { 100, 200, 200, 400 }

WORD screen handle;

/* Set required fill attributes */

/* Output filled rectangle */
vr recfl (screen handle rect);

~7 VDI-40 Section 4 - VDI Outut Functions

4.8 Output Bar v bar

A bar is a filled rectangle, used for such things as bar charts and so on. This
function can be used to output such a rectangle using all the fill area attributes.

4.8.1 Definition

The Prospero C definition of Output Bar is :

void v_bar(WORD handle, WORD xyarray[4]

4.8.2 Purpose

This function is used to output a filled rectangle to the specified device.

The function vbar is a Generalized Drawing Primitive (GDP) with
identifier 1. Its availability for a particular device may be determined by
seeing whether its identifier 1 appears in the list of supported GDPs in
work_out[15] to work_out [2 4] (cf. section 3.1).

The rectangle is filled using all the current fill area attributes and writing
mode, including the fill perimeter visibility (unlike vr_recf 1) - see the
following functions for more information:-

Set Writing Mode
Set Fill Interior Style
Set Fill Style
Set Fill Color Index

Set Fill Perimeter Visibility
Set User Defined Fill Pattern

vswr_mode
vsf_interior
vsf_style
vsf_color
vsf_perimeter
vsf_udpat

(see section 5.1)
(see section 5.17)
(see section 5.18)
(see section 5.19)
(see section 5.20)
(see section 5.21)

This function is similar to vr_recf1 (section 4.7), except that vr reef 1
does not use the fill perimeter visibility flag.

I

I

I

Section 4 - VDI Outut Functions

4.8.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

VDI-41

handle WORD Device handle

The handle of the device to which the rectangle
is to be output.

xyarray WORD[4] Rectangle

This parameter defines the rectangle to be
output, in the standard VDI rectangle format of
two diagonally opposite corners.

All coordinates are in the current coordinate

system (NDC or RC).

4.8.4 Example

WORD rect[] = { 100, 200, 200, 400 }

WORD screen handle;

/* Set required fill attributes */

/* Output filled rectangle */
v bar(screen handle, rect);

VDI-42

4.9 Output Arc
Output Pieslice

Section 4 - VDI Outut Functions

v_arc
pieslice

Arcs and filled arc segments (called pieslices) are available for drawing pie
charts and many other purposes.

4.9.1 Definition

The Prospero C definitions of Output Arc and Output Pieslice are:

void v_arc(WORD handle, WORD x, WORD y,
WORD radius, WORD begang, WORD endang);

void v_pieslice(WORD handle, WORD x, WORD y,
WORD radius, WORD begang, WORD endang);

4.9.2 Purpose

These functions are used to output respectively an arc or a pieslice to the
specified device.

The functions v_arc and vpieslice are Generalized Drawing Primitives
(GDPs) with identifiers 2 and 3 respectively. Their availability for a particular
device may be determined by seeing whether their identifiers 2 and 3 appear in
the list of supportedGDPs in wo rk_out [15] to work_out [24] (cf. section
3.1).

The arc is drawn using the current line attributes and writing mode. For more
information see the following functions :-

Set WritingMode vswr_mode (see section 5.1)
Set Line Type vs l_t ype (see section5.3)
Set User Defined Line Style vsl udsty (see section 5.4)
Set Line Width vsl_width (see section 5.5)
Set Line Color vsl_color (see section5.6)
Set Line End Style vsl_ends (see section5.7)

The pieslice is drawn using the current fill attributes and writing mode. See the
following functions for more information :-

Set Writing Mode
Set Fill Interior Style
Set Fill Style
Set Fill Color Index

Set Fill Perimeter Visibility
Set User Defined Fill Pattern

vswr_mode

vsf__interior
vsf_style
vsf_color
vsf_perimeter
vsf_udpat

(see section 5.1)
(see section 5.17)
(see section 5.18)
(see section 5.19)
(see section 5.20)
(see section 5.21)

I

I

I

I

I

1

I

I

I

I

I

I

Section 4 - VDI Outut Functions

4.9.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

VDI-43

handle WORD Device handle

The handle of the device to which the arc or

pieslice is to be output.

x WORD X coordinate

y WORD Y coordinate

The x and y coordinates of the centre of the
circle of which the arc or pieslice forms a part.

radius WORD Radius

The radius of the circle of which the arc or

pieslice forms a part, as measured along the x
axis.

All coordinates are in the current coordinate

system (NDC or RC).

begang WORD Beginning angle
endang WORD End angle

These parameters define define the starting and
ending angle of the arc or pieslice to be output.
Angles are measured in tenths of a degree,
starting at a line horizontally to the right and
working anti-clockwise, so that vertically up is
represented by 900.

The arc is drawn working anti-clockwise from
begang to endang. Values should be in the
range 0 to 3600.

4.9.4 Example

WORD screen_handle;

/* Set required fill and line attributes */
/* Draw a circle, with the bottom half filled */

v_arc(screen_handle, 200, 200, 50, 0, 1800);
v_pieslice(screen handle, 200, 200, 50, 1800, 3600)

~7 ypi-44 Section 4- VDI Outut Functions
4.10 Output Circle v_circle

This function is used to output a filled circle to a device. To output the outline
of a circle using the current line attributes, a 360 degree arc can be drawn
using the function varc (section 4.9).

4.10.1 Definition

The Prospero C definition of Output Circle is :

void v_circle(WORD handle, WORD x, WORD y,
WORD radius);

4.10.2 Purpose

This function is used to output a filled circle to the specified device.

The function vcircle is a Generalized Drawing Primitive (GDP) with
identifier 4. Its availability for a particular device may be determined by
seeing whether its identifier 4 appears in the list of supported GDPs in
work_out[15] to work_out [24] (cf. section 3.1).

The circle is drawn using the current writing mode and fill area attributes. See
the following functions for more information :-

Set Writing Mode vswr_mode (see section 5.1)
Set Fill Interior Style vsf_interior (see section 5.17)
Set Fill Style vsf_style (see section 5.18)
Set Fill Color Index vsf_color (see section 5.19)
Set Fill Perimeter Visibility vsfjoerimeter (see section 5.20)
Set User Defined Fill Pattern vsf udpat (see section 5.21)

I

I

I

I

I

I

I

Section 4 - VDI Outut Functions VDI-45

4.10.3 Parameters

Parameter Type of
name parameter

handle WORD

x

y

radius

WORD

WORD

WORD

Parameter description
Function of parameter

Device handle

The handle of the device to which the circle is to

be output.

X coordinate

Y coordinate

The x and y coordinates of the centre of the
circle.

Radius

The radius of the circle, as measured along the x
axis.

All coordinates are in the current coordinate

system (NDC or RC).

4.10.4 Example

WORD screen_handle;

/* Set required fill attributes */

/* Draw a filled circle */

v circle(screen handle, 200, 200, 50);

VDI-46 Section 4 - VDI Outut Functions

4.11 Output Elliptical Arc
Output Elliptical Pieslice

v

v

ellarc

ellpie

These functions can be used to draw an elliptical arc or filled arc segment.
These might be used for drawing '3 dimensional' piecharts, and so on.

4.11.1 Definition

The Prospero C definitions of Output Elliptical Arc and Pieslice are :

void v_ellarc(WORD handle, WORD x, WORD y,
WORD xradius, WORD yradius,
WORD begang, WORD endang);

void v_ellpie(WORD handle, WORD x, WORD y,
WORD xradius, WORD yradius,
WORD begang, WORD endang);

4.11.2 Purpose

These functions are used to output respectively an elliptical arc or pieslice to
the specified device.

The functionsv_ellarc and vellpie are Generalized Drawing Primitives
(GDPs) with identifiers 6 and 7 respectively. Their availability for a particular
device may be determined by seeing whether their identifiers 6 and 7 appear in
the list of supported GDPs in work out [15] to workout [24] (cf. section
3.1).

The arc is drawn using the current line attributes and writing mode. For more
information see the following functions :-

Set Writing Mode vswr_mode (see section 5.1)
Set Line Type vs l_type (see section 5.3)
Set User Defined Line Style vsl_udsty (see section 5.4)
Set Line Width vsl_width (see section 5.5)
Set Line Color vsl_color (see section 5.6)
Set Line Ends vsl ends (see section 5.7)

The pieslice is drawn using the current fill attributes and writing mode
the following functions for more information :-

see

Set Writing Mode
Set Fill Interior Style
Set Fill Style
Set Fill Color Index

Set Fill Perimeter Visibility
Set User Defined Fill Pattern

vswr_mode
vsf_interior
vsf_style
vsf__color
vsf_perimeter
vsf udpat

(see section 5.1)
(see section 5.17)
(see section 5.18)
(see section 5.19)
(see section 5.20)
(see section 5.21)

I

I

I

I

I

I

I

I

I

I

I

I

I

Section 4 - VDI Outut Functions VDI-47

4.11.3 Parameters

Parameter Type of
name parameter

handle

x

Y

WORD

WORD
WORD

xradius WORD

yradius WORD

begang WORD
endang WORD

4.11.4 Example

WORD screen handle;

Parameter description
Function of parameter

Device handle

The handle of the device to which the elliptical
arc or pieslice is to be output.

X coordinate

Y coordinate

The x and y coordinates of the centre of the
ellipse of which the arc or pieslice forms a part.

X radius

Y radius

The x and y axis radii of the ellipse of which the
arc or pieslice forms a part.

All coordinates are in the current coordinate
system (NDC or RC).

Beginning angle
End angle

These parameters define define the starting and
ending angle of the elliptical arc or pieslice to be
output. Angles re measured in tenths of a
degree, starting at a line horizontally to the
right and working anti-clockwise, so that
vertically up is represented by 900.

Values should be in the range 0 to 3600.

/* Set required fill and line attributes •I

I* Draw an ellipse, with the bottom half filled */
v_ellarc (scree.n_handle, 200, 200, 100, 50, 0, 1800)
v_ellpie(screenjiandle, 200, 200, 100, 50,

1800, 3600);

VDI-48 Section 4 - VDI Outut Functions

4.12 Output Ellipse v_ellipse

This function may be used to output a filled ellipse to a device. To output the
outline of an ellipse using the current line attributes, the function vellarc
(see section 4.11) may be used to draw a 360 degree elliptical arc. Only ellipses
whose axes are parallel to the x and y axes are supported.

4.12.1 Definition

The Prospero C definition of Output Ellipse is :

void v_ellipse(WORD handle, WORD x, WORD y,
WORD xradius, WORD yradius);

4.12.2 Purpose

This function is used to output a filled ellipse to the specifieddevice.

The function vellipse is a Generalized Drawing Primitive (GDP) with
identifier 5. Its availability for a particular device may be determined by
seeing whether its identifier 5 appears in the list of supported GDPs in
work_out[15] to work_out [24].

The ellipse is drawn using the current writing mode and fill area attributes. See
the following functions for more information :-

Set Writing Mode
Set Fill Interior Style
Set Fill Style
Set Fill Color Index

Set Fill Perimeter Visibility
Set User Defined Fill Pattern

vswr_mode
vsf_interior
vsf_style
vsf_color
vsf_perimeter
vsf_udpat

(see section 5.1)
(see section 5.17)
(see section 5.18)
(see section 5.19)
(see section 5.20)
(see section 5.21)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Section 4 - VDI Outut Functions VDI-49

4.12.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle

xradius

yradius

WORD Device handle

The handle of the device to which the ellipse is
to be output.

WORD X coordinate

WORD Y coordinate

The x and y coordinates of the centre of the
ellipse.

WORD X radius

WORD Y radius

The x and y axis radii of the ellipse.

All coordinates are in the current coordinate

system (NDC or RC).

4.12.4 Example

WORD screen_handle;

/* Set required fill attributes */

/* Draw a filled ellipse */
v ellipse(screen_handle, 200, 200, 100, 50)

VDI-50 Section 4 - VDI Outut Functions

4.13 Output Rounded Rectangle v_rbox
Output Filled Rounded Rectangle v_rfbox

These functions are used to draw a rectangle, either filled or unfilled, with
rounded corners.

4.13.1 Definition

The Prospero C definitions of Output Rounded Rectangle and Output Filled
Rounded Rectangle are:

void v_rbox(WORD handle, WORD xyarray[4]);

void v_rfbox(WORD handle, WORD xyarray[4]);

4.13.2 Purpose

These functions are used to output a rounded rectangle or a filled rounded
rectangle to the specified device.

The functions v_rbox and v_rfbox are Generalized Drawing Primitives
(GDPs) with identifiers 8 and 9 respectively. Their availability for a particular
device may be determined by seeing whether their identifiers 8 and 9 appearin
the list of supported GDPs in work out [15] to work out [24] (cf. section
3.1).

For vrbox, the rectangle is drawn using the current line attributes and
writing mode. See the following functions for more information :-

SetWriting Mode vswr_mode (see section 5.1)
SetLine Type vs l_t ype (see section 5.3)
SetUserDefined Line Style vs l_udsty (see section 5.4)
SetLine Width vsl_width (see section 5.5)
SetLine Color vs l_color (see section 5.6)
Set LineEnds vsl_ends (seesection 5.7)

For v_rfbox, the rectangle is filled using the current fill area attributes and
writing mode. See the following functions for more information :-

Set Writing Mode vswr_mode (seesection 5.1)
Set Fill Interior Style vsf_interior (see section 5.17)
SetFill Style vsf_style (see section 5.18)
Set Fill ColorIndex vs f_color (seesection 5.19)
Set Fill PerimeterVisibility vsf_perimeter (see section5.20)
Set User Defined Fill Pattern vsf_udpat (see section 5.21)

I

I

I

I

I

I

Section 4 - VDI Outut Functions

4.13.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

VDI-51

handle WORD Device handle

The handle of the device to which the rectangle
is to be output.

xyarray WORD[4] Rectangle

This parameter defines the rectangle to be
output, in the standard VDI rectangle format of
two diagonally opposite corners.

All coordinates are in the current coordinate

system (NDC or RC).

4.13.4 Example

WORD rect[] = { 100, 200, 200, 400 };

WORD screen handle;

/* Set required fill or line attributes */

/* Output rounded rectangle */
v rbox(screen handle, rect);

~7 VDI-52 Section 4 - VDI Outut Functions

4.14 Output Justified Text v justified

This function may be used to output text to a device in such a way that the
length of the line of text matches a requested value. Thus if several lines of text
are output below each other, both left and right margins can be uniform.

4.14.1 Definition

The Prospero C definition of Output Justified Text is :

void v_justified(WORD handle, WORD x, WORD y,
const char *astring, WORD length,
WORD word_space, WORD char_space);

4.14.2 Purpose

This function is used to output a text string to the specified device, and attempt
to justify it by expanding or contracting the inter-character and/or inter-word
spacing so that the string is of a particular length. The x and y offsets of each
character in a string output in this manner may be determined by using the
vqt_justif ied function described in section 8.13.

The function v_ just ified is a Generalized Drawing Primitive (GDP) with
identifier 10. Its availability for a particular device may be determined by
seeing whether its identifier 10 appears in the list of supported GDPs in
work out [15] to work_out [24] (cf. section 3.1).

The text is output using the current writing mode and text attributes. For more
information see the following functions :-

Set Text Height
Set Text Height (in points)
Set Character Baseline Vector

Select Character Font

Set Text Color

Set Text Effects

Set Graphic Text Alignment

vst height (see section 5.11)
vst point (see section 5.11)
vst rotation (see section 5.12)
vst font (see section 5.13)
VSt color (see section 5.14)
vst effects (see section 5.15)
vst alignment (see section 5.16)

* Section 4 - VDI Outut Functions VDI-53

4.14.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

handle WORD Device handle

The handle of the device to which the text is to

be output.

X WORD X coordinate

y WORD Y coordinate

I

I

I

I

I

I

I

The x and y coordinates at which the text is to be
output, in the current coordinate system.

See the function vst_alignment in section
5.16 for information on how these coordinates

relate to the position where the text is displayed.

astring const char* Text

length WORD

wordspace WORD
char_space WORD

The text to be output.

Length of text string

The length, as measured along the x axis, to
which the string is to be justified. (NB: NOT
the length of the string in characters.)

Modify word spacing
Modify character spacing

These two flags determine whether GEM VDI is
to modify the character spacing, the word
spacing, or both when attempting to justify the
string. A non-zero value is used if that option is
wanted; else zero is used. If both are zero, then
neither type of justification is permitted, and the
text can not be justified.

4.14.4 Example

WORD screen_handle;

v__justified (screen_handle, 100, 50,
"This is a line of text", 200, 1, 1);

v_justified(screen_handle, 100, 60,
"This will line up with it", 200, 1, 1]

~7 VDI-54 Section 5-VDI Attribute Functions
5 VDI ATTRIBUTE FUNCTIONS

This section contains descriptions of the VDI Attribute function bindings, in
the following sub-sections.

Section Function description Binding name

5.1 Set Writing Mode vswr mode

5.2 Set Color Representation vs color

5.3 Set Line Type vsl type

5.4 Set User Defined Line Style vsl udsty

5.5 Set Line Width vsl width

5.6 Set Line Color vsl color

5.7 Set Line End Styles vsl ends

5.8 Set Marker Type vsm type

5.9 Set Marker Height vsm height

5.10 Set Marker Color vsm color

5.11 Set Text Height vst height
vst point

5.12 Set Character Baseline Vector vst rotation

5.13 Select Character Font vst font

5.14 Set Text Color vst color

5.15 Set Text Effects vst effects

5.16 Set Graphic Text Alignment vst alignment

5.17 Set Fill Interior Style vsf interior

5.18 Set Fill Style Index vsf style

5.19 Set Fill Color Index vsf color

5.20 Set Fill Perimeter Visibility vsf perimeter

5.21 Set User Defined Fill Pattern vsf udpat

I

Section 5 -VDI Attribute Functions VDI-55

VDI attribute functions are provided to control the style of all subsequent
output to that workstation by the VDI Output functions described in section 4,
and to alter the style attributes in force when the workstation is first opened.
Most attribute functions return a value indicating what mode or style has been
selected - this will be the same as that requested if available, otherwise what
GEM considers to be the best substitute. Programs can test the result to check
that all is well, discard it, or assign it to a variable to be referred to later.

~7 VDI-56 Section 5 -VDI Attribute Functions

5.1 Set Writing Mode vswr_mode

"Writing mode" determines how text, lines, patterns or whatever appears on
the screen or other output device relative to what is already there. This is a
concept which is perhaps most applicable to screens where reverse video is
familiar. In paper and ink terms, the system may rub out what is already there
before writing (mode 1); it may write on top of what is already there,and risk
not being visible against a background of the same color (mode 2); it may write
wherever there is nothing and invert anything already there so that the
intersection of two black letters will be white (mode 3); and lastly may be
reversed out of what is already there - typically white letters appearing in a
dark or patterned background (mode 4).

5.1.1 Definition

The Prospero C definition of Set Writing Mode is :

WORD vswr_mode(WORD handle, WORD mode);

5.1.2 Purpose

This function is used to select the writing mode which will determine how
subsequent GEM VDI output interacts with what is already displayed. GEM
VDI output primitives described in section 4 may be output in one of four
writing modes, according to how the data being output (the mask - for
example a fill pattern, a line style, or a bit pattern of some text) is to relate to
the old color at each point, the current foreground color and the current
background color. The available modes are as follows :-

mode = 1 Replace mode

The new color is set to the foreground color wherever the mask is
set, and to the background color wherever it is unset. This is the
default mode when a workstation is opened. In this mode, text will
appear on a strip of the background color. Each new output replaces
what was previously displayed in the relevant pixels. This can be
expressed as

new = (mask & foreground) | (-mask & background)

I

I

I

I

I

!

Section 5 -VDI Attribute Functions VDI-57

mode = 2 Transparent mode

Only pixels where the mask is set are affected, and set to the
foreground color. In this mode, text would not appear on a strip of
the background color, and what was previously displayed would still
be visible through the gaps in the text. This can be expressed as

new = (mask & foreground) | (-mask & old)

mode = 3 XOR mode

This stands for exclusive OR - one or the other but not both. In this

mode, all pixels where the mask is set are reversed. This has several
uses - output in this mode will always have a visible effect regardless
of the background, and if the same mask is output again the display
will return to precisely the same as it was in the first place. This can
be expressed as

new = mask A old

mode = 4 Reverse transparent mode

This is similar to transparent mode, except that only those pixels
where the mask is unset are affected, being set to the foreground
color. It can be expressed as

new = (mask & old) | (-mask & foreground)

This function affects the subsequent output of all GEM VDI output functions
except v_cellarray (section 4.5).

5.1.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

handle WORD Device handle

The handle of the device whose writing mode is
to be set.

mode WORD Writing mode required

Selects which of the four output modes
described above is to be used for subsequent
output. If the value is not in the range 1 to 4,
mode 1 (replace mode) will be selected.

^r VDI-58 Section 5-VDI Attribute Functions
5.1.4 Function Result

The value returned by this function is a two-byte integer indicating which
writing mode has been selected - this will normally be the same as the value
passed in the parameter mode, but may be different if the value is out of range
or the device does not support that writing mode.

5.1.5 Example

WORD screen_handle;
int i, j;

/* Draw a creeping "Hello" */
if (vswr_mode(screen_handle, 3) == 3)

/* XOR mode selected ok */

for (i = 100; i <= 200; i++)

(/* Draw it */

v_gtext(screen_handle, i, 100, "Hello");

for (j = 0; j< 1000; j++); /* Delay a bit */

/* Restore display */
v_gtext(screen_handle, i, 100, "Hello");
}

else

v_gtext(screen_handle, 100, 100,
"XOR mode not available");

I

I

I

I

I

I

I

^r Section 5-VDI Attribute Functions VDI-59
5.2 Set Color Representation vs_color

This function is used to define the individual colors which are available for use
on a screen or camera. On a device which uses a lookup table to determine the
intensities of red, green and blueassociated witheachpossible pixel value, this
function can be used to set the exact shade of each available color index. On
devices which have no lookup table, this function will have no effect. The
number of colors whichcan be set in this way depends upon the device.

5.2.1 Definition

The Prospero C definition of Set Color Representation is :

void vs_color(WORD handle, WORD index, WORD rgb_in[3]);

5.2.2 Purpose

This function is used to select the intensity of red, green and blue with which a
particular color index is to be displayed, and hence what precise shade it
appears as. This will only have an effect on devices which support a color
lookup table - this can be determined for a particular device using the function
vqextnd (section 8.1).

The function vq_color (section 8.2) can be used to discover the current color
representation for a particular color index.

~y VDI-60
5.2.3 Parameters

Parameter Type of
name parameter

Section 5 -VDI Attribute Functions

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose color
representation is to be set.

index WORD Color index

This specifies which color index is to be set. The
background color is always referenced as color
index 0. The maximum index is device

dependent - it is returned as workout [13]
when the workstation is opened using vopnwk
or v_opnvwk (section 3.1).

rgb in WORD[3] Red green blue levels

This is an array of three two-byte integers,
giving respectively the required intensity of
red, green and blue for the given color index.
The intensities are in tenths of percent (0 to
1000) - values less than 0 will be treated as 0,
and values greater than 1000 will be treated as
1000.

5.2.4 Example

WORD screen_handle;
WORD my_rgb[3] = (1000, 0, 500},

/* Make color index 3 purplish */

vs_color(screen_handle, 3, my_rgb)

Section 5 -VDI Attribute Functions VDI-61

5.3 Set Line Type vsl_type

GEM VDI can produce lines of various types - solid, or dotted, or dashed, or
more complex. This function determines which type of line is to be used for
subsequent output.

5.3.1 Definition

The Prospero C definition of Set Line Type is :

WORD vsl_type(WORD handle, WORD style);

5.3.2 Purpose

This function is used to select the line style which will be used subsequently
when drawing VDI output primitives which use the line attributes. Note that
some devices only support non-solid line patterns for lines of the default
width - this can be checked using the function vq_extnd (section 8.1).
When the workstation is opened, the initial line type is set to the value passed in
work_in[1] .

The number of line styles available may depend on the device, but all should
should support line styles 1 to 7 as follows :-

1 solid

2 long dashed
3 dotted

4 dash-dot — —

5 dashed

6 dash-dot-dot — — — — — —
7 application defined using vsl udsty (section 5.4).

The availability of line styles with higher indices can be determined from the
value returned in work_out [6] when the device is opened (see section 3.1).

This function affects the subsequent output of the functions vjoline (section
4.1), v_arc (section 4.9), v_ellarc (section 4.11) and v_rbox (section
4.13).

~7 VDI-62
5.3.3 Parameters

Parameter Type of
name parameter

Section 5 -VDI Attribute Functions

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose line style is to be
set.

style WORD Line style required

The required line style, as described above. If
the specified index is out of range, a solid line
will be selected.

5.3.4 Function Result

The value returned by this function is a two-byte integer indicating which line
style has been selected - this will normally be the same as the value passed in
the parameter style, but may be different if the value is out of range or the
device does not support that line style. A solid line (style = 1) will be selected if
the value passed is out of range.

5.3.5 Example

WORD screen handle;

/* Select dotted line */

vsl_type(screen_handle, 3);
/* Draw a circle with it */

v arcfscreen handle, 100, 100, 50, 0, 3600)

Section 5 -VDI Attribute Functions VDI-63

5.4 Set User Defined Line Style vsl_udsty

One of the available line styles that can be selected by the function vs l_type
(section 5.3) is user defined. This function is used to set this extra style.

5.4.1 Definition

The Prospero C definition of Set User Defined Line Style is :

void vsl_udsty(WORD handle, WORD pattern);

5.4.2 Purpose

This function is used to define the line style which is used when the user
defined line style is selected by calling vsl_type with parameter style = 7.
When the workstation is opened, the user defined line style is set to a solid line.

5.4.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

handle WORD Device handle

The handle of the device whose line style is to be
set.

pattern WORD Line pattern

This parameter is used to define which areas of
the line are to be foreground and which
background. It is treated as 16 one-bit values,
each determining the state (l=foreground,
O=background) of that area of the line. The
patterns corresponding to the predefined line
styles are shown under vsl_type (section
5.3). The most significant bit of the pattern
corresponds to the first pixel displayed.

VDI-64 Section 5 -VDI Attribute Functions

5.4.4 Example

WORD screen handle;

/* Define a nearly solid line */
vsl_udsty(screen_handle, Oxfffe);
/* Select it */

vsl_type(screen_handle, 7);
/* Draw a circle with it */

v arc (screen handle, 100, 100, 50, 0, 3600);

I

I

I

I

I

I

I

I

I

Section 5-VDI Attribute Functions VDI-65

5.5 Set Line Width vsl_width

GEM VDI can produce lines of various widths - for screens the widths are 1,
3, 5 etc. pixels, depending on the screen. This function is used to set the width
used for subsequent line output.

5.5.1 Definition

• The Prospero C definition of Set Line Width is :

WORD vsl_width(WORD handle, WORD width);

' 5.5.2 Purpose

This function is used to define the line width which is used when outputting
GEM VDI primitives which use the line attributes. Note that when thickened
lines are output, the solid line style may be used rather than that selected, and
some writing modes may not be available - this may be determined using

Cvq_extnd (section 8.1). When the workstation is opened, the line width is set
to the default value.

. This function affects the subsequent output of the functions v pline (section
4.1), vjrc (section 4.9), v_ellarc (section 4.11) and v_rbox (section
4.13).

~y VDI-66
5.5.3 Parameters

Parameter Type of
name parameter

Section 5 -VDI Attribute Functions

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose line width is to
be set.

width WORD Line width

The line width requested, as measured along the
x axis in the current coordinate system. The line
width which is closest to that requested, but not
greater, will be selected. Line widths are odd
numbers of pixel widths starting at one - the
number available is returned in work out [7]
when the workstation is opened.

5.5.4 Function Result

The value returned indicates which line width has been selected - this may not
necessarily be thesameas that requested, but will never be greater.

5.5.5 Example

WORD screen_handle;
WORD graph[12];

/* Select line width */
vsl_width(screen_handle, 5) ;
/* Draw a heavy graph */
v_pline(screen_handle, 6, graph)

I

I

I

I

I

I

I

[

I

I

I

I

I

Section 5 -VDI Attribute Functions VDI-67

5.6 Set Line Color " vsl color

Lines can be drawn in any color the device will support; in the case of a
monochrome device this will be black or white, while other devices may
have more colors available.

5.6.1 Definition

The Prospero C definition of Set Line Color is :

WORD vsl_color(WORD handle, WORD color);

5.6.2 Purpose

This function is used to define the line color which is used when outputting
GEM VDI primitives which use the line attributes. At least two colors (0
and 1) are always available. When the workstation is opened, the initial line
color is set to the value passed in work_in [2]. The default color table
indices are as follows :-

Index Color

0 White

1 Black

2 Red

3 Green
4 Blue

5

6

Cyan
Yellow

7

8

Magenta
White

9 Black

10 Dark Red

11 Dark Green
12 Dark Blue

13

14

Dark Cyan
Dark Yellow

15 Dark Magenta

Values greater than 16 are device dependent. Color index 0 is defined to be
the background color. If a device has a color lookup table, the color
corresponding to each color index can be altered using vs color (section
5.2).

This function affects the subsequent output of the functions v pline
(section 4.1), v_arc (section 4.9), v^ellarc (section 4.11) and^/_rbox
(section 4.13).

"7 VDI-68 Section 5 -VDI Attribute Functions

5.6.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose line color is to

be set.

color WORD Line color

The color index requested. Permissible values
range from 0 to a device dependent maximum
which can be discovered from the value of

work_out[39] when the workstation is
opened. If an out of range color index is
requested, color index 1 will be selected. Color
index 0 is the background color.

5.6.4 Function Result

The value returned is a two-byte integer indicating which line color index has
been selected - this will normally be the same as that requested, unless it was
out of range.

5.6.5 Example

WORD screen_handle;
WORD line__array [100] ;

/* Set up line_array values first */

/* Select line color */

vsl_color(screen_handle, 1);
/* Draw a graph */
v_pline (screen__handle, 50, line_array)

I

" Section 5 -VDI Attribute Functions VDI-69

5.7 Set Line End Styles vsl_ends

GEM VDI can draw lines with arrows at the ends, or with rounded or square
cut ends. This function is used to set the end style used for the beginning and
end of subsequent lines output.

5.7.1 Definition

The Prospero C definition of Set Line End Styles is :

void vsl_ends(WORD handle,
WORD beg_style, WORD end_style);

5.7.2 Purpose

This function is used to define the style which is used to draw the ends of lines
when drawing GEM VDI primitives which use the line attributes. When the
workstation is opened, the initial line end style is squared.

This function affects the subsequent output of the functions v__pline (section
4.1), v_arc (section 4.9), v_ellarc (section 4.11) and v_rbox (section
4.13).

I

1

I

I

I

I

I

I

VDI-70

5.7.3 Parameters

Parameter Type of
name parameter

handle WORD

beg_style WORD
end_style WORD

5.7.4 Example

WORD screen handle;

Section 5 -VDI Attribute Functions

Parameter description
Function of parameter

Device handle

The handle of the device whose line end styles
are to be set.

Line beginning style
Line end style

The required line end style for the beginning
and end of each line respectively. The permitted
values are as follows :-

0 Squared end
1 Arrow end

2 Rounded end

The start and end of the line can be set to
different styles if desired. If a value is requested
which is out of range, squared ends will be
selected. Squared and arrowed end styles finish
at the end of the line in question - rounded ends
use the end point of the line as the centre of the
rounding.

/* Beginning arrowed, end rounded */
vsl_ends(screen_handle, 1, 2);

/* Draw a 90 degree arc, with a clockwise arrow */
v arcfscreen handle, 100, 100, 50, 0, 900);

I

I

[

I

I

I

I

Section 5 -VDI Attribute Functions VDI-71

5.8 Set Marker Type vsm_type

The function v_pmarker (section 4.2) can use a variety of different types of
markers - 6 as standard and more on certain devices. This function can be used

to select the marker style to be used, so that for example different lines on a
graph use different marker styles.

5.8.1 Definition

The Prospero C definition of Set Marker Type is :

WORD vsm_type(WORD handle, WORD symbol);

5.8.2 Purpose

This function is used to select the marker symbol which will be used for
subsequent polymarker output. The initial polymarker symbol is specified by
the value of work_in [3] when the workstation is opened.

All devices should support at least 6 polymarker symbols as follows :-

1 dot

2 plus
3 asterisk

4 square
C5 diagonal cross

f\ HiamnnH6 diamond

Marker symbols with index greater than 6 may be provided by some devices -
these will be device dependent. The number of marker symbols supported by a
device is returned in work out [8] when the device is opened.

I

Note that marker symbol 1 is always output as the smallest dot which the device
supports, and is not affected by the selected marker height (see vsm_height
in section 5.9).

I This function affects the subsequent output of the function vpmarker
(section 4.2).

VDI-72

5.8.3 Parameters

Parameter Type of
name parameter

Section 5 -VDI Attribute Functions

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose marker symbol
is to be set.

symbol WORD Marker symbol required

The marker symbol to be used for subsequent
polymarker output, as described above. If the
requested value is out of range, marker symbol
3 (asterisk) will be selected.

5.8.4 Function Result

The value returned by this function is a two-byte integer indicating which
marker symbol has been selected - this will normally be the same as the value
passed in the parameter symbol, but may be different if the value is out of
range or the device does not support that marker symbol. An asterisk (symbol
= 3) will be selected if the value passed is out of range.

5.8.5 Example

WORD screen_handle;
WORD graph [12] ;

/* Set up values of graph and required line style */

/* Select square markers */
vsm_type(screen_handle, 4);

/* Draw a graph */
v_pline(screen_handle, 6, graph);

/* Mark the vertices */

v_pmarker(screen_handle, 6, graph);

Section 5 -VDI Attribute Functions VDI-73

5.9 Set Marker Height vsm_height

Markers produced by v_pmarker (section 4.2) can have various sizes; this
function is used to determine their height.

5.9.1 Definition

The Prospero C definition of Set Marker Height is:

WORD vsm_height(WORD handle, WORD height);

I

I

I

I

[

I

I

I

5.9.2 Purpose

This function is used to define the markerheightwhich is used whenoutputting
polymarkers. When a workstation is opened, the polymarker height is set to
the default value.

This function affects the subsequent output of the function v_pmarker
(section 4.2).

5.9.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose marker height is
to be set.

height WORD Marker height

The marker height requested, as measured
along the y axis in the current coordinate
system. The available marker height which is
closest to that requested, but not greater, will be
selected. The number of available marker

heights is returned in workout [9] when the
workstation is opened.

~7 VDI-74 Section 5 -VDI Attribute Functions

5.9.4 Function Result

The value returned is a two-byte integer indicating which marker height has
been selected - this may not necessarily be the same as that requested, but will
never be greater.

5.9.5 Example

WORD screen_handle;
WORD graph [12];

/* Select marker height */
vsm_height(screen_handle, 7);

/* Draw a set of markers */

v_pmarker(screen_handle, 6, graph)

I

I

I

I

I

I

I

I

!

I

I

I

I

I

I

I

Section 5 -VDI Attribute Functions VDI-75

5.10 Set Marker Color vsm color

Polymarkers can be output in various colors. This function determines which
is used for subsequent output.

5.10.1 Definition

The Prospero C definition of Set Marker Color is :

WORD vsm color(WORD handle, WORD color)

5.10.2 Purpose

This function is used to define the marker color which is used when outputting
polymarkers. At least two colors (0 and 1) are always available. When the
workstation is opened, the initial marker color is set to the value passed in
work_in[4] .

This function affects the subsequent output of the function v_pmarker
(section 4.2).

5.10.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose marker color is

to be set.

color WORD Marker color

The color index requested. Permissible values
range from 0 to a device dependent maximum
which can be discovered from the value of

work_out[39] when the workstation is
opened. If an out of range color index is
requested, color index 1 will be selected. Color
index 0 is the background color.

"7 VDI-76 Section 5-VDI Attribute Functions
5.10.4 Function Result

The value returned is a two-byte integer indicating which marker color index
has been selected - this will normally be the same as that requested, unless it
was out of range.

5.10.5 Example

WORD screen_handle;
WORD graph[TOO];

/* Set up graph values */ >

/* Select line color 3 and marker color 1 */

vsl_color(screen_handle, 3);
vsm color(screen handle, 1);

/* Draw a graph */
v_pline(screen_handle, 50, graph);
/* Mark the points */
v_pmarker(screen_handle, 50, graph);

I

I

I

I

I

I

I

I

I

I

Section 5 -VDI Attribute Functions VDI-77

5.11 Set Text Height vst_height
vst_point

The size of characters to be output by GEM VDI may be varied in size using
either of these routines. The size may be specified either in the current device
coordinate system, or in point size, the type sizing system used by printers.
Both routines return the sizes of a character and the cell it occupies. The
function vst__point additionally returns the actual point size selected.

5.11.1 Definition

The Prospero C definitions of Set Text Height are :

void vst_height(WORD handle, WORD height,
WORD *char_w, WORD *char_h,
WORD *cell_w, WORD *cell_h);

WORD vst_point(WORD handle, WORD height,
WORD *char__w, WORD *char_h,
WORD *cell_w, WORD *cell_h);

5.11.2 Purpose

These routines are used to define the character height which will be used for
subsequent graphic text output to the device. The two are very similar, the only
difference being that vst_height requires the height to be given in device
coordinates (NDC or raster coordinates), while vst_point requires the
height to be specified in printer points, where one point is equivalent to 1/72 of
an inch. Both return size information about the character set selected (in device

[coordinates); vst_point also returns as the function result the point size
selected, so that an application can determine whether the requested point size
was available.

These routines affect the subsequent output of the functions v_gtext (section
4.3) and vjustif ied (section 4.14).

~7 VDI-78
5.11.3 Parameters

Parameter Type of
name parameter

Section 5 -VDI Attribute Functions

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose text height is to
be set.

height WORD Requested character height

This parameter specifies the character height
which the application wants. For vst height,
the value gives the height required from the
character baseline to the top of the character
cell, measured in y-axis units in the current
device coordinate system (NDC or raster
space). For vst_point, the value gives the
height measured from the bottom of the
character cell to the top of the character cell
(i.e. the height of the character cell) in printer
points (1/72 inch). In both cases, the available
character set which is closest to but not greater
than the requested size will be selected.

Character width selected

Character height selected

These parameters point to objects which return
the width and height of the widest character in
the selected character set, in the current device
coordinate system. The height is measured from
the character baseline to the top of the character
cell, and the width does not include the left or
right alignment deltas (see section 8.8).

cell w WORD * Character cell width selected

cellh WORD * Character cell height selected

These parameters point to objects which return
the width and height of the character cell of the
widest character in the selected character set, in
the current device coordinate system.

charw WORD *

char h WORD *

Section 5 -VDI Attribute Functions VDI-79
5.11.4 Function Result

The value returned by vstpoint gives the point size of the selected
character set. This will always be less than or equal to the requested point size.

5.11.5 Example

WORD screen;

WORD w, h, cw, ch;

vst height (screen, 20, &w, Sh, Sew, &ch) ;
j- if Th != 20)

{ /* Character set 20 rasters high not available */

I

I

I

I

I

I

}
if (vst_point(screen, 12, Sw, &h, Sew, Sch) != 12)

{ /* 12 point character set not available */

}

* VDI-80 Section 5 -VDI Attribute Functions

5.12 Set Character Baseline Vector vst_rotation

Graphic text can be output in a normal horizontal way, or, on some output
devices, at different angles. Drawing devices such as plotters are best at
printing text at any angle; in pixel based devices such as screens, cameras, and
matrix printers there is likely to be quality degradation at angles unless the
pixel is small enough - in laserprinters it usually is. A device such as a daisy
wheel printer will have no way of outputting a character at a different angle.
This function serves to alter the angle of the line on which text is output.

5.12.1 Definition

The Prospero C definition of Set Character Baseline Vector is :

WORD vst_rotation(WORD handle, WORD angle);

5.12.2 Purpose

This function is used to select the angle of the baseline parallel to which all
subsequent graphic text will occur. Angles are specified in tenths of a degree,
anti-clockwise from the horizontal, so that an angle of zero is normal default
text output. Some devices may support only a limited number of angles, or
noneat all - this canbe determined from the value in work_out [36] whena
workstation is opened, or more precisely using the function vqextnd
(section 8.1), which returns a value of 0, 1or2 in work_out [8] according to
whether the device supports no rotation, 90 degree increments only, or
arbitrary angle rotations.

This function affects the subsequent output of the functions vgtext (section
4.3) and v_ just if ied (section 4.14).

I

I

I

I

I

!

I

I

!

Section 5 -VDI Attribute Functions

5.12.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

VDI-81

handle WORD Device handle

The handle of the device whose text rotation

vector is to be set.

angle WORD Character baseline angle

This parameter specifies the character baseline
vector angle requested by the application, in
tenths of degrees anti-clockwise from
horizontal. GEM VDI will select the best
available angle of rotation, and return the
rotation angle selected as the function result.

5.12.4 Function Result

The value returned gives the character rotation angle selected, in the same
form as the angle parameter. This will be the best available approximation to
the angle requested.

5.12.5 Example

WORD screen handle;

if (vst_rotation(screen_handle, 900) != 900)
{ /* Device can't write vertical text */

VDI-82 Section 5 -VDI Attribute Functions
5.13 Select Character Font vst_font

GEM has one built-in system font (typeface) for most devices - with the
notable exception of printers. Any other font has to be loaded before use. This
function is used to selecta font for subsequent graphic text output.

5.13.1 Definition

The Prospero C definition of Select Character Font is :

WORD vst_font(WORD handle, WORD font);

5.13.2 Purpose

This function is used to selectthe font (alsoknown in GEM VDI as a face) used
for subsequent text output. Fontsare referred to by a font index number - font
index 1 is the system font for a device (if it has one), and does not need to be
loaded before use. Other fonts are external, and must be loaded using
vst_load_fonts (section 3.5) before use. The indices for these external
fonts may be determined using the vqtname function (section 8.9). Indices
in the range 1 to 17 are defined as follows :

1 - System font
2 - Swiss 721

3 - Swiss 721 Thin
4 - Swiss 721 Thin Italic
5 - Swiss 721 Light
6 - Swiss 721 Light Italic
7 - Swiss 721 Italic
8 - Swiss 721 Bold

9 - Swiss 721 Bold Italic
10 - Swiss 721 Heavy
11 - Swiss 721 Heavy Italic
12 - Swiss 721 Black

13 - Swiss 721 Black Italic
14 - Dutch 801 Roman

15 - Dutch 801 Italic
16 - Dutch 801 Bold

17 - Dutch 801 Bold Italic

Thisfunction affects the subsequent output of the functions vgtext (section
4.3) and v justified (section 4.14).

Section 5 -VDI Attribute Functions

5.13.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

VDI-83

handle WORD Device handle

The handle of the device whose text font is to be
selected.

font WORD Requested text font

This parameter gives the index of the font
requested.

Note that some devices, particular printers, do
not have system fonts. For these devices, font
index 1 can not be selected, and an external font
must be loaded and selected before graphic text
can be output.

5.13.4 Function Result

The value returned gives the text font selected. This can be compared to the
requested value to see if the font selection was successful, or simply ignored.

5.13.5 Example

WORD screen handle;

/* Select system font */
vst font (screen handle, 1);

~7 VDI-84 Section 5 -VDI Attribute Functions

5.14 Set Text Color vst color

Text may be output in various colors depending on the device in use. This
function is used to select the color to be used for subsequent graphic text
output.

5.14.1 Definition

The Prospero C definition of Set Text Color is :

WORD vst color(WORD handle, WORD color)

5.14.2 Purpose

This function is used to select the color of subsequent graphic text output.
Permissible values range from 0 to a device dependent maximum (always at
least 1). If the value requested is beyond the maximum available index, color
index 1 will be selected. When the workstation is opened, the initial text color
is specified by the value in work_in [6].

This function affects the subsequent output of the functions vgtext (section
4.3) and v__justif ied (section 4.14).

5.14.3 Parameters

Parameter Type of
name parameter

handle WORD

color WORD

Parameter description
Function of parameter

Device handle

The handle of the device whose text color is to

be set.

Requested text color

This parameter gives the index of the color
requested.

Section 5 -VDI Attribute Functions VDI-85
5.14.4 Function Result

The value returned gives the color index selected. This will be the same as that
requested if it was in range, otherwise color index 1 will be selected.

5.14.5 Example

WORD screen_handle;
WORD color;

int i;

j i = 2;
I do {

color = vst_color(screen_handle, i++);
/* Output some text */

} while (color != 1); /* in every color available
except index 0 */

I

I

I

I

I

I

I

I

~7 VDI-86 Section 5-VDI Attribute Functions
5.15 Set Text Effects vst_effects

GEM can alter a font before using it for output. These alterations are, in
printer's terms, bold, light, italic, underline, outline or shadow. The success of
these alterations from a graphic point of view is variable as they are
mathematical transformations without any design input. Text Effects should
not be confused with selecting a different version of a font such as Swiss Light
Italic; in this case the letters of the font are individually designed. This function
is used to set the special effects to be used for subsequentgraphic text output.

5.15.1 Definition

The Prospero C definition of Set Text Effects is:

WORD vst_effects(WORD handle, WORD effect);

5.15.2 Purpose

This function is used to select the text effects to be used for subsequent graphic
text output. The effects available are thickened, light, skewed, underlined,
outlined, shadowed, or any combination. The required effects are specified
using a .bitmap - the required state (selected or not selected) of each effect is
determined by the value (0 or 1) of the corresponding bit in the effect
parameter. The easiest way to use such a bitmap is to declare a constant with
just the relevant bit set for each effect, then to combine the constants of the
required effects using the OR (I) operator. Suitable constants would be as
follows :-

#define normal 0x0000

♦define thickened 0x0001

♦define light 0x0002

♦define skewed 0x0004

♦define underlined 0x0008

♦define outlined 0x0010

♦define shadowed 0x0020

The function returns a similar bitmap indicating which of the requested effects
were available - this can be compared to the requested value to discover which
effects were not available.

This function affects the subsequent output of the functions v_gtext (section
4.3) and v justified (section 4.14).

I

Section 5 -VDI Attribute Functions

5.15.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

VDI-87

handle WORD Device handle

The handle of the device whose text effects are

to be set.

effect WORD Requested text effects

This parameter specifies the requested effects,
one bit per effect, where a bit value of 1
indicates the effect is selected, and a bit value of
0 indicates the effect is not selected. The effects

available are described above.

5.15.4 Function Result

The value returned gives the effects which were selected, in the same form as
the parameter effect. If a device does not support a particular effect, it will
set the corresponding bit to zero in the function result.

5.15.5 Example

fdefine normal 0x0000

Ifdefine thickened 0x0001

fdefine light 0x0002

(define skewed 0x0004

fdefine underlined 0x0008

fdefine outlined 0x0010

fdefine shadowed 0x0020

WORD screen;

WORD effects;

effects = vst_effects(screen, shadowed I skewed)
if (i (effects & skewed))

{ /* skewed style not available */

}

VDI-88 Section 5 -VDI Attribute Functions

5.16 Set Graphic Text Alignment vst alignment

When text is output to a device it may be left-aligned, right-aligned or centred
relative to a starting point. It may also be placed at various heights above or
below the starting point. This function is used to set the horizontal and vertical
alignment to be used for subsequent graphic text output.

5.16.1 Definition

The Prospero C definition of Set Graphic Text Alignment is :

void vst_alignment(WORD handle,
WORD hor_in, WORD vert_in,
WORD *hor out, WORD *vert out)

5.16.2 Purpose

This function is used to select the alignment of graphic text output. This
determines which point of the text output corresponds to the x and y
coordinates specified in the parameters passed to the v_gtext function
(section 4.3). Horizontally, the x coordinate can indicate the start, centre, or
end of the text, while vertically the y coordinate may indicate the position of
the text base line, half line, ascent line, descent line, cell bottom or cell top (see
diagram). The default when a workstation is opened is left base line aligned
text.

This function affects the subsequent output of the functions vgtext (section
4.3) and v_just if ied (section 4.14).

Top Line

Bottom Line

Top Line

Bottom Line

Ascent Ltnc.

Half line

Base Line
Descent line,

Ds am mr
Ascent Line

Half line

Base Line

Descent line

nrown

Vertical Alignment Points

UK

I

I

I

I

I

I

!

I

I

I

I

I

Section 5 -VDI Attribute Functions VDI-89

5.16.3 Parameters

Parameter Type of
name parameter

handle WORD

hor in WORD

vert in WORD

hor out WORD *

vert out WORD *

Parameter description
Function of parameter

Device handle

The handle of the device whose text alignment is
to be set.

Requested horizontal alignment

This parameter specifies the requested
horizontal text alignment :-

0 = left aligned (default)
1 = centre aligned
2 = right aligned

Requested vertical alignment

This parameter specifies the requested vertical
text alignment :-

0 = base line aligned (default)
1 = half line aligned
2 = ascent line aligned
3 = cell bottom aligned
4 = descent line aligned
5 = cell top aligned

Selected horizontal alignment

This parameter points to an object which
returns the horizontal alignment selected by
GEM VDI. If the requested value is out of
range, left alignment will be selected.

Selected vertical alignment

This parameter points to an object which
returns the vertical alignment selected by GEM
VDI. If the requested value is out of range, base
line alignment will be selected.

~7 VDI-90
5.16.4 Example

WORD screen_handle;
WORD dummy;

Section 5 -VDI Attribute Functions

/* Select centre cell bottom alignment,
ignore returned values */

vst_alignment(screen_handle, 1, 3, Sdummy, Sdummy)

Section 5 -VDI Attribute Functions VDI-91

5.17 Set Fill Interior Style vsf_interior

GEM VDI can output filled shapes using one of several fill modes - the shapes
can be filled with the background color, a specified color, or a pre-defined or
user defined pattern. This function is used to select which mode is to be used,
and therefore determines which of the other fill attributes are relevant.

5.17.1 Definition

The Prospero C definition of Set Fill Interior Style is :

WORD vsf_interior(WORD handle, WORD style);

5.17.2 Purpose

This function is used to select the manner in which filled shapes are output by
GEM VDI. The possible fill modes are hollow, solid, filled with a pattern or
hatch style, or filled with a user defined fill pattern. The initial fill interior
style when a workstation is opened is given by the value of work_in [7] (see
section 3.1).

GEM VDI supports 5 different fill styles, each of which can be further
modified using other attribute functions described in later sections :-

0 - hollow fill - the area is filled using the background color

1 - solid fill - the area is filled using the color defined using

I

I

I

I

I

I

/sf_color (section 5.19)

2- pattern fill - the area is filled using the pattern whose index is
selected using vsf_style (section 5.18)

3 - hatch fill - the area is filled using the hatch pattern whose index is
selected using vsf_style (section 5.18)

4- user-defined pattern -the area is filled using the pattern defined
using vsf_udpat (section 5.21)

This function affects the subsequent output of the functions v_f illarea
(section 4.4), v_contour f i 11 (section 4.6), vr_recfl (section 4.7),
v_bar (section 4.8) , v_pieslice (section 4.9). v_circle (section 4.10),
v_ellpie (section 4.11), v_ellipse (section 4.12), vrbox (section 4.13)
and v__rfbox (section 4.13).

~7 VDI-92
5.17.3 Parameters

Parameter Type of
name parameter

Section 5 -VDI Attribute Functions

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose fill mode is to be

set.

style WORD Requested fill interior style

This parameter specifies the requested fill
interior style, as described above. The value
should be in the range 0 to 4.

5.17.4 Function Result I

The value returned is the fill mode selected by GEM VDI. Hollow fill (mode
zero) is selected if the requested mode is not available or out of range.

5.17.5 Example i

WORD screen handle;

if (vsf_interior(screen_handle, 3) == 3)
/* Hatch mode available so pick one */
vsf_style(screen_handle, 1);

I

I

I

I

I

I

Section 5 -VDI Attribute Functions VDI-93

5.18 Set Fill Style Index vsf_style

If pattern or hatch fill mode is selected using vsf_interior (see section
5.17), this function should be used to select which pattern or hatch style is to be
used.

5.18.1 Definition

The Prospero C definition of Set Fill Style Index is :

WORD vsf_style(WORD handle, WORD style);

5.18.2 Purpose

This function is used to select which fill pattern or hatchstyle will be used for
fill operations. The number of patterns and hatches available are returned in
work_out[ll] and work_out [12] when the workstation is opened - see
section 3.1. Pattern styles 1 to 8 are uniform monochrome dot patterns of
increasing intensity, so that fill pattern index 8 is the sameas selecting solid fill
- see section 5.17. Hatch styles differ from patterns only in that they always
consist of horizontal, vertical and diagonal lines in various combinations. The
diagram below shows the normal patterns and hatch styles available, though
these may vary slightly between devices, and between versions of GEM. The
initial fill style index is given by the value of work_in [8] when the
workstation is opened.

This function affects the subsequent output of the functions v_f illarea
(section 4.4), v_contourf i 11 (section 4.6), vr_recf 1 (section 4.7),
vjoar (section 4.8), v_pieslice (section 4.9), v__circle (section 4.10),
v_ellpie (section4.11), v_ellipse (section 4.12), v_rbox (section4.13)
and v__rfbox (section 4.13).

~7 VDI-94 Section 5 -VDI Attribute Functions

Pattern Styles

^ em hh wm ^m mm
10 11 12 13 14 15

.V.V.N'.V.N HUM

3tf
WtVt ^^^^*♦+♦♦!

16

17 18 19 20 21 22 23 24

Hatch Styles

1 3 4

mmE
9 10 11 12

GEM VDI Pattern and Hatch Style Indices

5.18.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose fill style index is
to be set.

style WORD Requested Fill style index

This parameter specifies the requested fill style
index, in the range 1 to work_out [11] for
patterns and 1 to work_out [12] for hatches.

I * Section 5-VDI Attribute Functions VD1-95
' 5.18.4 Function Result

The value returned is the fill style index selected by GEM VDI. Index 1 is
selected if the requested index is out of range.

5.18.5 Example

I

WORD screen_handle;
int inc, angle, i;
WORD work out[57] ;

angle = 0;
inc = 3600 / (work_out[11] + work_out[12])

/* Select pattern fill */
vsf interior (screen handle, 2);

for (i = 1; i<= work_out[l]; i++)
{ /* Use each pattern in turn in turn */

vsf_style(screen_handle, i);
v pieslice(screen_handle, 150, 150, 100,

angle, angle+inc);
angle += inc;

I

I
/* Select hatch fill */

vsf interior (screen handle, 3)

for (i = 1; i <= work_out[12]; i++);
{ /* Use each hatch pattern in turn */

vsf_style(screen_handle, i);
v pieslice(screen_handle, 150, 150, 100,

angle, angle+inc);

[angle += inc;

};

I

I

I

I

VDI-96 Section 5 -VDI Attribute Functions
5.19 Set Fill Color Index vsf_color

This function is used to specify the color which is to be used for subsequentfill
operations, when the selected fill mode (section 5.17) is solid fill, pattern fill,
hatch fill or user defined pattern fill. When hollow fill mode is selected, the
area is always filled with the background color.

5.19.1 Definition

The Prospero C definition of Set Fill Color Index is :

WORD vsf color(WORD handle, WORD color);

5.19.2 Purpose

This function is used to select the color index used for filling shapes, when
using solid fill style, or monochrome (single plane) fill patterns or hatches.
Fill patterns with indices in the range 1 to 8 are always monochrome, and will
be displayed as increasing intensity dot patterns in the current fill color as
defined by this function. User defined patterns may be monochrome single
planepatterns, in which case the fill color, background and writing mode will
be used to determine the color of each pixel. Multiplane patterns should only
be used in replace mode, and are not affected by the fill color index - see
section 5.21 for further details.

Available colors range from 0 to a device dependent maximum, returned in
work_out [13] when the device is opened (see section 3.1). If the requested
color index is out of range, color index 1 will be selected. The initial fill color
index isgiven bythe value ofworkin [9] when the workstation isopened.

This function affects the subsequent output of the functions v_f illarea
(section 4.4), v_contourf ill (section 4.6), vr_recf 1 (section 4.7),
v_bar (section 4.8), v^pieslice (section 4.9), v_circle (section 4.10),
v_ellpie (section 4.11), v_ellipse (section 4.12), v_rbox (section 4.13)
and v_rfbox (section 4.13).

I

I

I

I

I

I

I

I

I

I

I

I

Section 5 -VDI Attribute Functions

5.19.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

VDI-9"

handle WORD Device handle

The handle of the device whose fill color index

is to be set.

color WORD Requested fill color index

This parameter specifies the requested fill color
index. If the value is out of range, color index 1
is selected.

5.19.4 Function Result

The value returned is the fill color index selected by GEM VDI. Color index 1
is selected if the requested color is out of range.

5.19.5 Example

WORD screen handle;

/* Select solid fill in color 5 */

vsf_interior(screen_handle, 1);
vsf_color (screen__handle, 5) ;

/* Now draw a filled circle */

v circle(screen handle, 150, 150, 100)

^7 VDI-98 Section 5 -VDI Attribute Functions

5.20 Set Fill Perimeter Visibility vsf_perimeter

GEM VDI can output filled areas with or without a solid line (in the current
fill color) drawn around the area's boundary, and this function is used to
specify whether or not the perimeter is to be drawn in this way.

5.20.1 Definition

The Prospero C definition of Set Fill Perimeter Visibility is :

void vsf_perimeter(WORD handle, WORD per vis)

5.20.2 Purpose

This function is used to specify whether filled areas should be outlined or not.
When a workstation is opened, the default is that outlining is enabled until
disabled using this function.

This function affects the subsequent output of the functions v_f illarea
(section 4.4), v_contou r f i 11 (section 4.6), v_bar (section 4.8),
v_pieslice (section 4.9), v_circle (section 4.10), v_ellpie (section
4.11), v_ellipse (section 4.12), v_rbox (section 4.13) and v_rfbox
(section 4.13). Note however that vr_recf 1 (section 4.7) does not use this
attribute, and never outlines the filled rectangles it outputs. To output an
outlined filled rectangle, the function vbar should be used which does use
this attribute.

5.20.3 Parameters

Parameter Type of
name parameter

handle WORD

per_vis WORD

Parameter description
Function of parameter

Device handle

The handle of the device whose fill perimeter
visibility is to be set.

Visibility flag

If this is non-zero, the filled area's border will
be marked with a solid line. If zero, the border
will not be marked.

I

I

I

Section 5 -VDI Attribute Functions VDI-99

5.20.4 Example

WORD screen handle;

/* Select hollow fill, no border */
vsf_interior(screen_handle, 0);
vsf^perimeter(screen_handle, 0);

/* Erase a circular area */
v_circle(screen_handle, 150, 150, 100)

VDI-100 Section 5 -VDI Attribute Functions

5.21 Set User Defined Fill Pattern vsf_udpat

One of the fill modes which may be selected using vsf_interior (section
5.17) is to use the user definable fill pattern. When this mode is in force, the
pattern used for filling areas can be defined using this function.

5.21.1 Definition

The Prospero C definition of Set User Defined Fill Pattern is :

void vsf_udpat(WORD handle, WORD fill_pat[],
WORD planes);

5.21.2 Purpose

This function is used to define the pattern to be used when the user defined fill
interior style is in use. The pattern can be monochrome (one plane), in which
case it will be output using the current writing mode, with the foreground
color defined by the current fill color index (section 5.19), or it can contain
several planes, in which case it must be output in replace mode, any unspecified
planes being treated as zero.

The array defining the pattern can thus consist of any number of planes, each
of 16 elements. The application should define a suitable array with 16 WORD
elements per plane, then pass the address of the array to this function in the
parameter f ill_pat. Each element in the array corresponds to a single row
of the pattern, with each bit giving the value of a single pixel in that plane. The
most significant bit of the first element corresponds to the top left corner of the
pattern.

This function affects the subsequent output of the functions v_f illarea
(section 4.4), v_contourf ill (section 4.6), vr_recf 1 (section 4.7),
v_bar (section 4.8), v_pieslice (section 4.9), v_circle (section 4.10),
v_ellpie (section 4.11), v_ellipse (section 4.12), v_rbox (section 4.13)
and v_rfbox (section 4.13).

I

I

I

I

I

Section 5 -VDI Attribute Functions

5.21.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

VDI-101

handle WORD Device handle

The handle of the device whose user definable
fill pattern is to be set.

Fill pattern array

The array defining the fill pattern. The
application must ensure that the array contains
16 elements for every plane specified by the
planes parameter.

planes WORD Number of planes

The number of planes in the pattern. A pattern
with more than one plane can only be used in
replace mode, each plane in the pattern being
copied to the corresponding color plane of the
device. A pattern with a single plane can be
output in any of the four writing modes selected
using vswr_mode (section 5.1).

fill_pat WORD[]

~~7 VDI-102
5.21.4 Example

WORD screen_handle;
WORD my_pat [64] ;
WORD other_pat[16];
int i, j;

Section 5 -VDI Attribute Functions

for (i = 0; i < 4; i++)
for (j = 0; j < 16; i++)
/* set up my_pat array */

for (j = 0; j < 16; j++)
/* set up other_pat array */

/* Select and define user defined fill, replace mode */
vsf_interior(screen_handle, 4);
vsf_udpat(screen_handle, my_pat, 4);
vswr_mode(screen_handle, 1);

/* Draw multicolored circle, replace mode */
v_circle(screen_handle, 150, 150, 100);

/* Define another pattern, transparent mode */
vsf_udpat(screen_handle, other_pat, 1);
vswr_mode(screen_handle, 2);

/* Draw monochrome pattern , transparent mode */
v circle(screen handle, 250, 150, 100);

I

I

1

Section 6 -VDI Raster Functions VDI-103

6 VDI RASTER FUNCTIONS

This section contains descriptions of the VDI Raster Operation functions, in
the following sub-sections.

Section Function description Binding name

6.1 Copy Raster Opaque vrocpyfm

vrt_cpyfm

vr_trnfm

v_get_pixel

Raster operations concern the process of copying large amounts data from one
area of memory to another, between the device display area and an area of
memory, or from one area of the device display to another. One major use for
these kind of operations is to move text and/or graphics around the screen, for
example to scroll the contents of a window, or to copy an area of the screen to a
memory buffer, to be restored at a later date.

1 6.2 Copy Raster Transparent

6.3 Transform Form

1 6.4 Get Pixel

I

I

I

I

I

~y VDI-104 Section 6 -VDI Raster Functions

6.1 Copy Raster Opaque vrocpyfm

This function allows rectangular raster areas to be copied from one area of the
display to another, or to or from an area of memory. A number of operations
can be performed on the raster data between the source and destination, so that
this function may be used to clear or invert a portion of the display, although a
simple copy is probably the most common use.

6.1.1 Definition

The Prospero C definition of Copy Raster Opaque is :

void vro_cpyfm(WORD handle, WORD wr_mode,
WORD xyarray[8],
MFDB *srcMFDB, MFDB *desMFDB);

6.1.2 Purpose

This function modifies a portion of the memory or display area described by
desMFDB, depending on the value of the parameter wr_mode and the
contents of the area described by srcMFDB. The two raster areas can be part of
the display area or buffer of the device concerned, or they may be blocks of
memory. The same memory area may be used for both source and destination,
and the portions of the memory area which correspond to the source and
destination may overlap. A number of different operations other than simply
copying are possible - in fact there are 16 possible modes according to the
value of the wr_mode parameter as follows :-

= 0

= source & destination

= source & (~ destination)
= source

= (~ source) & destination
= destination

= source A destination

= source | destination
= ~ (source | destination)
= ~ (source Adestination)
= ~ destination

= source | (~ destination)
= ~ source

= (~ source) | destination
= ~ (source & destination)

o destination

1 destination

2 destination

3 destination

4 destination

5 destination

6 destination

7 destination

8 destination

9 destination

10 destination

11 destination

12 destination

13 destination

14 destination

15 destination

/* replace mode */
/* erase mode */

/* XOR mode */

/* transparent mode*/

/* reverse transparent */

I

" Section 6 -VDI Raster Functions VDI-105

The areas of memory used to contain the source and destination rasters are
described by records of type MFDB. This is declared in the file VDIBIND.H as

I follows :-

typedef struct {

CWORD * praster;

WORD width, height, word_width;
WORD standard;

WORD nplanes;

CWORD resl, res2, res3; /* Reserved */

} MFDB;

The meanings of the fields are as follows :-

praster A pointer to the area of memory to be used to store the
raster.

A value of null indicates that the device display area is to be
used rather than an area of memory - this should be used for
example to move one area of the screen to another, or to
copy the screen to a buffer. If praster is NULL, the other
fields in the record are not relevant.

width Specifies the width of the raster area in pixels.

height Specifies the height of the raster area in pixels.

wordwidth Specifies the width of the raster area in words. This will be
the width in pixels divided by the number of bits in a word
(16). This value is used by GEM VDI to calculate the offset
in words corresponding to moving down one pixel.

standard This is a flag indicating whether the raster is in device
specific (standard = 0) or device independent standard
form (standard = 1) . For the vro_cpyfm function both
source and destination must be in device specific form.

nplanes The number of planes in the raster area.

I

I

1

I

I

I

I

!

I

I

"7 VDI-106 Section 6-VDI Raster Functions
6.1.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

handle WORD Device handle

The handle of the device concerned.

wr mode WORD Writing mode

This parameter determines how the source and
destination raster areas are to interact. There
are 16 possible modes as described above.

xyarray WORD[8] Rectangle definitions

This parameter contains the coordinates of two
rectangles: each point is represented by a
consecutive pair of elements; these are the two
opposite corners of the source and destination
rasters, making a total of four points or eight
elements.

If both source and destination share the same
area of memory (e.g. both refer to the device)
and the rectangles overlap, the order in which
the copy is performed will be such that no area
of the source is altered until it has been
processed. If the source and destination
rectangles are not the same size, the size of the
source will be used, and the location of the
destination used unless scaling is available - this
can be determined using the function
vq_extnd described in section 8.1.

I

I

I

I

I

!

Section 6 -VDI Raster Functions VDI-107

srcMFDB MFDB* Source raster definition
desMFDB MFDB * Destination raster definition

The parameters srcMFDB and desMFDB are
memory form definition blocks as described
above. To copy from one area of the device to
another, a structure of type MFDB must be
declared, the praster field assigned the value
NULL, and the variable passed in both
parameters.

6.1.4 Example

MFDB src, dest;

WORD rects [] = { 0, 0

0, 0

WORD screen_handle;
WORD * my save area = (WORD *) malloc (32000);

319, 199, /* The whole screen */

319, 199 };

src.praster = NULL; /* No other fields relevant */
dest.praster = my_save area;
dest.width = 320;~
dest.height = 200;
dest .word__width = 20; /* 20 words is 320 bits */
dest.standard = 0;

dest.nplanes = 4;

/* Save whole of a four-plane (16 color) screen to
a memory area, replace mode */

vro_cpyfm(screen handle, 3, rects, Ssrc, &dest);

<r VDI-108 Section 6 -VDI Raster Functions

6.2 Copy Raster Transparent vrt_cpyfm

This function is a little similar to the preceding function Copy Raster Opaque
(section 6.1), except that the source raster area is always a monochrome, single
plane mask, which must be an area of memory rather than the screen or display
buffer. The destination may be the display buffer or a memory area. Four
different writing modes are supported to give different interactions between
the mask data in the source raster and the destination.

6.2.1 Definition

The Prospero C definition of Copy Raster Transparent is :

void vrt_cpyfm(WORD handle, WORD wr^mode,
WORD xyarray[8],
MFDB *srcMFDB, MFDB *desMFDB,

WORD index[2]);

6.2.2 Purpose

This function modifies a portion of the raster area described by desMFDB
depending on the value of the parameter wrmode and the contents of the
mask described by srcMFDB. The destination raster area can be part of the
display area or buffer of the device concerned, or a memory area. The source
must be a monochrome (single plane) area of memory. The destination is
modified according to the values of the corresponding bits in the source mask,
the two color indices provided and the writing mode. Four writing modes are
supported as follows :-

1 - (replace mode)
All pixels in the destination rectangle will be set to the foreground
color where the source mask has a bit set, and to the background
color where the source has a bit not set. The foreground and
background colors are specified by index [0] and index [1]
respectively.

2 - (transparent mode)
Those pixels in the destination where the source has a pixel set are set
to the foreground color in index [0]. Pixels in the destination
which correspond to unset pixels in the source are unaffected. The
value of index [1] is not used.

3- (XOR mode)
The monochrome raster source is logically XORed with each plane
of the destination. The values of index are not used.

I

Section 6 -VDI Raster Functions VDI-109

4 - (reverse transparent mode)
Those pixels in the destination where the source has a bit unset are set
to the background color in index [1]. Other pixels are not affected.
The value of index [0] is not used.

These writing modes correspond to those available for normal GEM VDI
output, described in section 5.1.

6.2.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device concerned.

wr mode WORD Writing mode

This parameter determines how the source mask
is to affect the pixels in the destination raster
area. There are 4 possible modes as described
above.

xyarray WORD[8] Rectangle definitions

This parameter contains the co-ordinates of two
rectangles: each point is represented by a
consecutive pair of elements; these are the two
opposite coiners of the source and destination
rasters, making a total of four points or eight
elements.

If the source and destination rectangles are not
the same size, the size of the source will be
used, and the location of the top left hand corner
of the destination used to determine which area

of the destination is affected.

~7 VDI-110 Section 6 -VDI Raster Functions

srcMFDB MFDB * Source raster definition
desMFDB MFDB * Destination raster definition

The parameters srcMFDB and desMFDB point
to memory form definition blocks, as described
under the Copy Raster Opaque function in
section 6.1. The source must be a memory form
rather than the device, and must consist of a
single plane.

index WORD[2] Color indices

This parameter is an array of two two-byte
integers, giving the foreground and background
colors respectively. The manner in which they
affect the destination color depends upon the
value of the parameter wr mode, as described
above.

6.2.4 Example

WORD mask[16];

MFDB src, dest;

WORD index[2];

WORD myrects [8]

/* First set up a shape in the array mask */
src.praster = Smask;
src.width = 16;

src.height = 16;
src.word_width = 1;
src.standard = 0;

src.nplanes = 1;

dest.praster = NULL;

myrects[0] = 0;
myrects[1] = 0;
myrects[2] = 15;
myrects[3] = 15;
index[0] = 3;

/* 16 bits in a word */

/* Mask must be monochrome */

/* Destination is the screen */
/* Set up source rectangle */

/* whole of source area */
/* new color where mask set */

/* Set up myrects[4 to 7] for required dest area */

/* Set destination to color 3 where mask was 1 */
vrt cpyfm(screen, 2, myrects, &src, Sdest, index);

I

I

I

I

I

I

I

I

i

I

I

I

I

I

Section 6 -VDI Raster Functions VDI-111

6.3 Transform Form vr_trnfm

This function is used to transform a raster form from device specific to
standard form, or vice versa. A program might convert a raster area to
standard form then to the device specific form of a different device, to
transfer a raster from one device to another.

6.3.1 Definition

The Prospero C definition of Transform Form is :

void vr_trnfm(WORD handle,
MFDB *srcMFDB, MFDB *desMFDB);

6.3.2 Purpose

This function places in the area described by the destination Memory Form
Definition Block (MFDB) a copy of the raster form described by the source
MFDB, except that if the source is in device specific form the destination
will be in standard form, and vice versa. The number of planes transferred
is specified by the source MFDB. The format flag in the source MFDB (the
value of the standard field) is toggled and placed in the destination MFDB
- other fields in the destination MFDB must be set up by the application.
The source and destination may be the same area, otherwise they must not
overlap in memory. The physical device, specified by the value NULL in the
praster field of a MFDB, can only be in device specific form. See section
6.1 for a description of the fields of an MFDB.

In standard form, the mapping between colors nd pixel values is fixed, and
the planes are stored as contiguous rows of words from the top left of the
image, with the most significant bit of each 16-bit word corresponding to
the leftmost bit in the image.

VD1-112

6.3.3 Parameters

Parameter Type of
name parameter

Section 6 -VDI Raster Functions

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device concerned.

srcMFDB MFDB* Source raster definition

desMFDB MFDB * Destination raster definition

The parameters srcMFDB and desMFDB point
to memory form definition blocks, as described
under the Copy Raster Opaque function in
section 6.1. The number of planes specified by
srcMFDB. nplanes will be transferred to the
destination, and the form (standard or device
specific) of the source will be toggled and
placed in the destination MFDB.

6.3.4 Example

MFDB src;

WORD screen handle;

/* Copy a raster area into memory form described by
src (e.g. using vro_cpyfm) */

/* Transform it to standard form */
vr_trnfm(screen handle, Ssrc, ssrc);

Section 6 -VDI Raster Functions VDI-113

6.4 Get Pixel v_get_pixel

This function is used return the pixel value and color index for a specified
pixel. The pixel value is the combined bit values of each plane of the display at
the specified point, while the color index is the value which, when used as the
line or fill color, for example, would produce that pixel value. The mapping
between pixel values and color indices is device specific.

6.4.1 Definition

The Prospero C definition of Get Pixel is :

void v_get_pixel(WORD handle, WORD x, WORD y,
WORD *pel, WORD *index);

6.4.2 Purpose

This function is used to determine the pixel value and color index of a specified
pixel element of the device.

~7 VDI-114
6.4.3 Parameters

Parameter Type of
name parameter

handle

x

y

pel

index

WORD

WORD

WORD

WORD *

WORD

6.4.4 Example

WORD screen_handle;
WORD value, color;

Section 6 -VDI Raster Functions

Parameter description
Function of parameter

Device handle

The handle of the device whose pixels are to be
tested.

X coordinate

Y coordinate

The x and y coordinates of the point in question
in the current coordinate system. The pixel
containing the specified point will be tested.

Pixel value

This parameter points to an object which
returns the pixel value of the specified point, in
device specific form.

Color index

This parameter points to an object which
returns the color index of the specified pixel.
Color index 0 is the background color, but may
not be represented by pixel value 0 in the device
specific form.

/* Get pixel value and color of point (100,100) */
v_get_pixel(screen_handle, 100, 100,

Svalue, Scolor);

I

I

I

I

I

I

I

I

I

1

Section 7 - VDI Input Functions VDI-115

7 VDI INPUT FUNCTIONS

This sectioncontains detailed descriptions of the GEM VDI inputfunctions, in
the following sub-sections.

Section Function description

7.1 Set Input Mode

7.2 Input Locator

7.3 Input Valuator

7.4 Input Choice

7.5 Input String

7.6 Set Mouse Form

7.7 Exchange Timer Vector

7.8 Show and Hide Cursor

7.9 Sample Mouse State

7.10 Exchange Button Change Vector

7.11 Exchange Mouse Travel Vector

7.12 Exchange Cursor Draw Vector

7.13 Sample Keyboard State

Binding name

vsin_mode

vrq_locator
vsm_locator

vrq_valuator
vsm_valuator

vrq_choice
vsm_choice

vrq_string
vsm_string

vsc_form

vex_timv

v_show_c
v_hide_c

vq_mouse

vex_butv

vex_motv

vex_curv

vq key s

The routines described in this section are concerned with obtaining input from
the user. GEM VDI input uses theconceptof logical input devices associated
with each workstation, so that a program can obtain inputfrom the locator, the
valuator, the choice or the string logical device according to what information
the program requires. These logical devices are described further under the
relevant sub-section.

VDI-116 Section 7 - VDI Input Functions

Each logical device can operate in sample mode or request mode, as described
in section 7.1, and a separate function or function is provided in each mode.
These functions differ only in the way that the parameters are passed to the
GEM VDI, but make use of the same GEM VDI function. Thus calling the
request mode function whena device is in sample mode will not cause sample
mode to be entered, but will cause the values to be passed to and from GEM
VDI in a manner which may not be relevant in sample mode. Therefore a
program should always take care that the function or function used
corresponds to the current state of the logical device. When a workstation is
opened, all devices are initially in request mode.

Programs whichuse the AES mustuse the AES inputfunctions rather than the
ones in this section. Many of the routines in this section have direct
counterparts in the AES which perform identical functions.

I

I

I

I

I

I

~z Section 7- VDI Input Functions VDI-H7

7.1 Set Input Mode vsin mode

GEM VDI supports input from a number of logical devices, eachof which may
operate in oneof two modes - sample mode or request mode. In request mode,
the program calls a function whenever it wants input from that logical device,
and the function returns when the required input is available. In sample mode,
the program will call the relevant function when it requires input, but the
function will return immediately whether or not input was available. In this
way the application could, for example, continue processing while waiting for
the input. Note thateach logical input device has two input functions to be used
with it, one for sample mode and one for request mode. However these
functions do not cause the required input mode to be selected, so that a
program must take care to ensure it always sets the correct input mode using
this function before requesting input.

When several virtual screen workstations share the same physical screen,
sample mode input cannot operate correctly, as GEM VDI cannot tell for
which workstation an input was intended. Request mode only should be used in
such cases.

7.1.1 Definition

The Prospero C definition of Set Input Mode is:

void vsin_mode(WORD handle, WORD dev_type, WORD mode);

7.1.2 Purpose

This function allows the input mode for a particular logical input device to be
selected for subsequent input. Eachof the (upto) four logical inputdevices that
a device may support operates in two modes, request mode and sample mode,
according to whether the device is to wait until input is available or return
immediately indicating whether input was available or not.

Two input functions are provided for each logical input device, one for sample
mode inputand one for request mode input. However, it is important to realize
that these are simply different interfaces to the same GEM function, and that
these functions do not cause the device to enter request or sample mode.
Therefore the desired input mode should besetusing the function vsin_mode
before using the input functions, to place the input device in thecorrect input
mode. When a workstation is opened, all input devices will be placed in request
mode.

~y vDi-ns
7.1.3 Parameters

Parameter Type of
name parameter

Section 7 - VDI Input Functions

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose input mode is to
be set.

dev_type WORD

mode WORD

7.1.4 Example

WORD screen handle;

Input device type

The logical input device whose input mode is
being selected, as follows :-

1 : locator

2: valuator

3: choice

4 : string

Input mode

The input mode to be used for subsequent input
from the logical device :-

1 - Request mode
2- Sample mode

Note that sample mode should not be used when
multiple virtual screen workstations are sharing
the same physical screen device, as the driver
cannot tell which virtual workstation should
receive the input, and therefore input may be
missed.

/* Open physical screen workstation */
/* Select sample mode for string input device */
vsin mode(screen handle, 4, 2);

I

I

I

I

I

I

I

I

I

I

Section 7 - VDI Input Functions VDI-119

7.2 Input Locator vrq_locator
vsm_locator

These functions are used to obtain input from the locator logical input device.
The function used depends upon the currently selected input mode for the
locator device (see vsin_mode in section 7.1)-use vrq_locator in request
mode, or vsm_locator in sample mode.

7.2.1 Definition

The Prospero C definitions of Input Locator are:

void vrq_locator(WORD handle, WORD initx, WORD inity,
WORD *xout, WORD *yout, WORD *term);

WORD vsm_locator(WORD handle, WORD initx, WORD inity,
WORD *xout, WORD *yout, WORD *term);

7.2.2 Purpose

These are used to obtain a coordinate pair from the locator logical input device
associated with a workstation. The locator device may be driven by moving an
attached mouse, light pen or pen on a graphics tablet - most screen devices also
support the use of the cursor keys for moving the locator device, typically
causing large increments when the cursor keys are used unmodified, or small
increments when the shift key is held down at the same time. Where the locator
device can be operated by an external mouse etc. and the keyboard, either will
be tracked on the screen. The value returned in work_out [40] when the
workstation is opened indicates what capabilities are available - see section 3.1.

The function vrqlocator operates in request mode (the default when a
workstation is opened), and causes a cursor to be displayed at the starting
location and tracked on the screen until a terminating event such as a keypress
or a mouse button occurs. The function vsm_locator operates in sample
mode, which should have been previously selected using vsin_mode (see
section 7.1). This function does not cause a cursor to be displayed - this can be
done via v show c described in section 7.8.

VDI-120

7.2.3 Parameters

Parameter Type of
name parameter

handle

initx

inity

xout

yout

term

WORD

WORD

WORD

WORD *

WORD *

WORD *

Section 7 - VDI Input Functions

Parameter description
Function of parameter

Device handle

The handle of the device whose locator device is

to be sampled.

Initial X coordinate

Initial Y coordinate

The initial x and y coordinates of the locator
device, in the current coordinate system.

Final X coordinate

Final Y coordinate

These parameters point to objects used to return
the final x and y coordinates of the locator
device, in the current coordinate system.

Terminating key

This parameter points to an object which
returns the ASCII code of the key which was
pressed to terminate the input. For locator
devices other than the keyboard, terminating
events will be returned as values starting at the
ASCII space character.

7.2.4 Function Result

The function vsm locator returns a value in the range 0 to 3 as follows :-

0 - Nothing happened
1 - Coordinates changed, no terminating key pressed
2 - Terminating key pressed (returned in term), coordinates unchanged
3 - Terminating key pressed (returned in term), coordinates changed

Section 7 - VDI Input Functions VDI-121

7.2.5 Example

WORD screen,-

WORD xcoord, ycoord;

WORD dummy; /* Don't care how it ends */

/* Open physical screen workstation */

/* Get a location */

vrq_locator(screen, 100, 100, Sxcoord, Sycoord,
Sdummy);

/* Select sample mode for locator input device */
vsin_mode(screen, 1, 2);
v_show_c(screen, 0); /* Display cursor */

do {

/* Sample until terminated */
} while (vsm_locator(screen, xcoord, ycoord,

Sxcoord, Sycoord, Sdummy) < 2);
v hide c (screen);

VDI-122 Section 7 - VDI Input Functions

7.3 Input Valuator vrq_valuator
vsm_valuator

These functions are used to obtain input from the valuator logical input device.
The function used depends upon the currently selected input mode for the
valuator device (see vsin_mode in section 7.1) - use vrq_valuator in
request mode, or vsm_valuator in sample mode.

7.3.1 Definition

The Prospero C definitions of Input Valuator are:

void vrq_valuator(WORD handle, WORD val_in,
WORD *val_out, WORD *term);

void vsm_valuator(WORD handle, WORD val_in,
WORD *val_out WORD *term,
WORD *status);

7.3.2 Purpose

These are used to obtain a value from the valuator logical input device
associated with a workstation. The valuator device may be driven by an
attached potentiometer, but can also be driven using the up and down cursor
keys, typically adding or subtracting ten when the cursor keys are used
unmodified, or one when the shift key is held down at the same time. Valuator
numbers range from 1 to 100. The value returned in work_out [41] when a
workstation is opened indicates whether a valuator device is available - see
section 3.1.

In request mode, the function vrq_locator is used, which will keep
adjusting the valuator according to cursor key presses until a terminating key
is pressed. In sample mode, vsm_locator should be used - this will return
immediately indicating whether any change was made to the valuator device,
and whether a terminating character was pressed.

These functions are not required and may not be supported by all devices.

I

I

I

I

1

I

I

Section 7 - VDI Input Functions

7.3.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

VDI-123

handle WORD Device handle

The handle of the device whose valuator is to be

sampled.

valin WORD Initial valuator value

The initial value to be given to the valuator
device, in the range 1 to 100.

val out WORD * Final valuator value

Points to an object used to return the final
valuator value when the function returns.

term WORD * Terminating key

This parameter points to an object which
returns the ASCII code of the key which was
pressed to terminate the input.

status WORD * Status

This parameter is for vsm__valuator only,
and points to an object which returns a number
in the range 0 to 2 as follows :-

0 - Nothing happened
1 - Valuator changed
2 - Terminator character pressed

"7 VDI-124 Section 7- VDI Input Functions
7.3.4 Example

WORD screen;

WORD result, status;

WORD dummy; /* Don't care how it ends */

/* Open physical screen workstation */

/* Get a value */

vrq_valuator(screen, 50, Sresult, Sdummy);

/* Select sample mode for valuator input device */
vsin_mode(screen, 2, 2);
do {

/* Sample until terminated */
vsm_valuator(screen, result,

Sresult, Sdummy, Sstatus);

} while (status != 2);

I

I

I

I

I

I

I

I

I

I

1

I

I

I

Section 7 - VDI Input Functions VDI-125

7.4 Input Choice vrq_choice
vsm choice

These functions are used to obtain input from the choice logical input device.
The function used depends upon the currently selected input mode for the
choice device (see vsin_mode in section 7.1) - use vrq_choice in request
mode, or vsm_choice in sample mode.

7.4.1 Definition

The Prospero C definitions of Input Choice are :

void vrq_choice(WORD handle, WORD ch_in,
WORD *ch_out);

WORD vsm choice(WORD handle, WORD *choice)

7.4.2 Purpose

These are used to obtain a choice value from the choice logical input device of
the specified workstation. The choice device is typically driven by the function
keys of the keyboard. In request mode, the function vrq_choice is used,
which will wait until a key is pressed before returning, and return that choice
value if it is a valid choice key, otherwise returning the initial choice value. In
sample mode, vsm_choice should be used - this will return immediately
indicating whether any choice key has been pressed. The value returned in
work_out [42] when a workstation is opened indicates whether a choice
device is available- see section 3.1.

These functions are not required and may not be supported by all devices.

7.4.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose choice input is
to be sampled.

7 VDI-126 Section 7 - VDI Input Functions

chin WORD Default choice value

The default choice value, which will be returned
via ch_out if the key pressed to terminate the
input is not a valid choice key.

(vrq_choice only)

chout WORD * Output choice value

Points to an object used to return the final
choice value when the function returns.

(vrq_choice only)

choice WORD * Choice value

Points to an object used to return the choice if a
valid choice was made, otherwise returns 0.

(vsm_choice only)

7.4.4 Function Result

Thefunction vsm_choice returns non-zero if the sample wassuccessful, and
the value returned in the parameter choice is a valid choice number.

7.4.5 Example

WORD screen;

WORD result;

/* Open physical screen workstation */
vrq_choice(screen, 5, Sresult); /* Get a choice */

/* Select sample mode for choice input device */
vsin_mode(screen, 3, 2);
do {

/* Sample until successful */
} while (!vsm choice (screen, Sresult));

Section 7 - VDI Input Functions

7.5 Input String

I These functions are used to obtain input from the string logical input device.
The function used depends upon the currently selected input mode for the
string device (see vsin_mode in section 7.1) - use vrq_string in request
mode, or vsm_string in sample mode.

VDI-127

vrq_string
vsm string

7.5.1 Definition

The Prospero C definitions of Input String are :

void vrq_string(WORD handle, WORD length,
WORD echo_mode, WORD echo_xy[2],
char astringU);

WORD vsm_string(WORD handle, WORD length,
WORD echo_mode, WORD echo_xy[2],
char astring[]);

7.5.2 Purpose

These are used to obtain a string value from the string logical input device (the
keyboard) of the specified workstation. In request mode, vrq string is
used, and input characters are accumulated until either a carriage return is
pressed or the maximum string length requested is reached. In sample mode,
vsm string is used, and characters are accumulated as before, but the
function returns as soon as characters are not available at the keyboard as well
as either of the other two terminating conditions. The value returned in
work-out [43] when a workstation is opened indicates whether a string
device is available - see section 3.1.

The string may optionally be echoed at a given location, using the current text
attributes (see section 5), but this facility may not be available on all devices.

~7 VDI-128
7.5.3 Parameters

Parameter Type of
name parameter

Section 7 - VDI Input Functions

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device from which a string is
to be input.

length WORD Maximum string length

The maximum number of characters to be

accumulated before returning. This should not
be greater than the length of the receiving
character array.

echo_mode WORD Echo mode flag

If this is non-zero, the characters typed will be
echoed at the given location, using the current
text attributes to output the characters. If this is
zero, no output will occur. Not all devices
support echo mode (in fact most seem not to).

echoxy WORD[2] Echo location

This parameter provides the alignment point
(see vst_alignment in section 5) at which the
text is to be echoed if echo_mode is non-zero.

astring char[] String input

This parameter specifies the character array
used to return the string input.

7.5.4 Function Result

The function vsm string returns the number of characters returned in the
parameter astring, or zero if the sample was not successful.

I

I

I

I

I

^ Section 7- VDI Input Functions VDI-129
7.5.5 Example

WORD screen;

WORD echo_point[2] = { 100, 100};
char result[81];

/* Open physical screen workstation */
/* Get a string */
vrq string (screen, 80, 1, echo_point, result);

/* Select sample mode for string input device */
vsin_mode(screen, 4, 2);
if (vsm_string(screen, 1, 0, echo_point, result))

{ /* A string is available */

~ VDI-130 Section 7 - VDI Input Functions

7.6 Set Mouse Form vsc_form

This function may be used to redefine the cursor form used for locator input
or at other times when the cursor is displayed, for example by the use of
v_show_c described in section 7.8. This function should not be used by
applications using the GEM AES library- a similar function is available using
graf_mouse described in section 8 of the AES manual.

7.6.1 Definition

The Prospero C definition of Set Mouse Form is :

void vsc_form(WORD handle, WORD cur_form[37]);

7.6.2 Purpose

This function can be used to alter the cursor form for VDI applications. The
cursor is described by an array[37] of WORD as follows :-

cur_form [0] Hotspot x coordinate
cur_form[l] Hotspot y coordinate
cur_form [2] Reserved, must be 1
cur form [3] Mask color
cur form [4] Data color

cur_form [5] to
cur_form[20] Mask

cur_form [21] to
cur_form[36] Data

The hot spot is the point which is returned or provided as the mouse position-
for an arrow cursor this would be the point of the arrow, while for a crosshair
type cursor form it would be the centre of the cross. Elements 0 and 1 give the
offsets of the hot spot from the top lefthand corner of the image.

The image of the mouse form is stored as two 16 by 16 arrays of bits, where
the most significant bit of the first element corresponds to the top left hand
corner of the mouse image. The first array contains the mask - a one bit in this
image causes the corresponding pixel to be set to the mask color, unless the
corresponding bit in the data image is also set. The second array contains the
data image- a one bit in this imagecauses the correspondingpixel to be set to
the data color.

I

I

I

I

I

Section 7 - VDI Input Functions VDI-131

Normally the mask color will be the background color, and the data color the
foreground color, and the mask image will be the same shape as the data image
but with a border one pixel wide around it. This produces a cursor which will
be visible everywhere on the screen, and will work on every screen. However,
varying these 'rules' can produce interesting effects.

7.6.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose mouse form is
to be set.

curform WORD[37] Mouse form

7.6.4 Example

WORD screen;

WORD my cursor[37;

This is an array describing the required mouse
form, as described above.

/* Hotspot near centre */

/* Mask color index 0 *

/* Data color index 4 *

lc, Oxlc, Oxlc, Oxlc,

lc, Oxlc, Oxlc, Oxlc,

lc, Oxlc, Oxlc, Oxlc,

lc, Oxlc, Oxlc, Oxlc,

Wide vertical bar for mask

08, 0x08, 0x08, 0x08,

08, 0x08, 0x08, 0x08,

08, 0x08, 0x08, 0x08,

08, 0x08, 0x08, 0x08

Thin vertical bar for data

1,

0,
4,

Ox

Ox

Ox

Ox

/*
Ox

Ox

Ox

Ox

/*

};

vsc_form(screen, my cursor) /* Use my mouse form */

VDI-132 Section 7 - VDI Input Functions

7.7 Exchange Timer Vector vex_timv

This function may be used to cause an assembler coded routine to be entered
every time a timer tick occurs.

7.7.1 Definition

The Prospero C definition of Exchange Timer Vector is :

void vex__timv(WORD handle, ENTRY_TYPE tim_addr,
ENTRY_TYPE *otim_addr, WORD *tim__conv) ;

7.7.2 Purpose

This function can be used to provide the address of an assembler routine which
will be called by GEM VDI every time a timer tick occurs.

All registers must be saved, so the code would have to be in assembler rather
than Prospero C. The function returns the old value of the timer vector via the
parameter otim_addr, so that this can be restored when the application has
completed. The parameter timconv is used to return the number of
milliseconds per timer tick, and hence the interval which will elapse between
successive calls of the application's code.

For 68000 family processors, the application's code is invoked with interrupts
disabled, by a JSR instruction. The code should execute without enabling
interrupts, and return with a RTS instruction when done.

For 8086 type processors, the application's code is invoked with interrupts
disabled, by a FAR CALL instruction. The code should execute without
enabling interrupts, and return with a FAR RET instruction when done.

I

I

I

I

I

I

I

Section 7 - VDI Input Functions VDI-133

7.7.3 Parameters

Parameter Type of
name parameter

handle WORD

tim_addr ENTRY
TYPE

otim_addr ENTRY_
TYPE *'

tim conv WORD *

Parameter description
Function of parameter

Device handle

The handle of the device whose timer vector is
to be set.

Timer routine address

This is the address of the routine which GEM
VDI will call once per timer tick.

Old timer routine address

This points to an object which will receive the
address of the routine which GEM VDI was
previously calling once per timer tick. This
should be saved by the application to be used in a
subsequent call of vex_t imv to restore normal
timer operation before terminating.

Milliseconds per tick

This points to an object which will receive the
number of milliseconds which will elapse
between subsequent calls of the application's
timer routine.

7.7.4 Example

WORD screen;

ENTRY_TYPE save_timer, my_timer;
WORD millisecs;

/* Get address of assembler routine in my_timer first*/

/* Cause it to be executed once per tick */
vex_timv(screen, my_timer, Ssave_timer, Smillisecs);

/* About to terminate - restore normal timer routine */
vex_timv(screen, save_timer, Ssave_timer, Smillisecs);
/* NB Last two parameters not relevant here! */

7 VDI-134 Section 7- VDI Input Functions
7.8 Show and Hide Cursor v_show_c

v_hide_c

These functions may be used to cause the mouse cursor to be displayed or
hidden.

7.8.1 Definition

The Prospero C definitions of Show Cursor and Hide Cursor are :

void v_show_c(WORD handle, WORD reset);

void v_hide_c(WORD handle);

7.8.2 Purpose

These two functions show or hide the cursor respectively. Note that two
consecutive hides will normally require two shows to restore the cursor -
however if the parameter reset is non-zero, a call of v_show_c will cause
the cursor to be displayedhowever many times v_hide_c has been called. A
program can thus hide the cursor at the start of a drawing routine, then by
using v_show_c with a value of zero, restore the cursor only if it was
displayed previously, so that the routine has no permanenteffect on the mouse
state.

The default state when the workstation is opened is that the cursor is hidden,
requiring a single call of v_show_c to display it.

I

I

I

I

I

I

I

!

!

I

Section 7 - VDI Input Functions VDI-135

7.8.3 Parameters

Parameter Type of
name parameter

handle WORD

reset WORD

7.8.4 Example

WORD screen;

Parameter description
Function of parameter

Device handle

The handle of the device whose mouse form is

to be displayed or hidden.

Reset flag

If this is non-zero, the cursor will be displayed
regardless of the number of preceding
v_hide_c calls that have been made. If reset
is zero, then the cursor will be displayed only
when the number of v_show_c calls made is
equal to the number of v_hide_c calls made.

(v_show_c only)

/* Remove cursor if onscreen */

v_hide_c(screen);

/* Do some drawing */

/* Replace it if it was onscreen */
v show c (screen, 0);

~7 VDI-136 Section 7 - VDI Input Functions

7.9 Sample Mouse State vq_mouse

This function may be used to discover the current mouse button states, and the
position of the mouse cursor.

7.9.1 Definition

The Prospero C definition of Sample Mouse State is :

void vq_mouse(WORD handle, WORD *status,
WORD *x, WORD *y);

7.9.2 Purpose

This function is used to return the state (up or down) of the mouse buttons, and
the current mouse location. Note that applications which use the GEM AES
should use the graf_mkstate routine described in the AES manual section 8,
which performs a similar function.

I

I

I

I

I

!

I

I

Section 7 - VDI Input Functions VDI-137

7.9.3 Parameters

Parameter Type of
name parameter

handle WORD

status WORD *

x WORD *

y WORD *

7.9.4 Example

WORD screen;

WORD state;

WORD x, y;

Parameter description
Function of parameter

Device handle

The handle of the device whose mouse state is to
be returned.

Button status

This parameter points to an object which
returns a map of which of the (up to) 16 mouse
buttons are depressed. The least significant bit
corresponds to the leftmost button, with a bit
value of 1 indicating the corresponding mouse
button is depressed. Thus for example with a
two button mouse, the following values may be
returned :-

0 (00 binary) •
1 (01 binary)
2 (10 binary)-
3 (11 binary)-

No buttons down

Left hand button down

Right hand button down
Both buttons down

Mouse X coordinate

Mouse Y coordinate

These parameters point to objects which return
the current location of the mouse cursor, in the
current coordinate system.

do (

/* Get mouse state */

vq_mouse(screen, Sstate,
} while (state != 1); /v

Sx, Sy);

Wait until left hand

button down */

~7 VDI-138 Section 7- VDI Input Functions
7.10 Exchange Button Change Vector vex_butv

This function may be used to cause an assembler coded routine to be entered
every time the mouse button state changes.

7.10.1 Definition

The Prospero C definition of Exchange Button Change Vector is :

void vex_butv(WORD handle, ENTRY_TYPE usrcode,
ENTRY_TYPE *savcode);

7.10.2 Purpose

This function can be used to provide the address of an assembler routine which
will be called by GEM VDI every time it notices a change in the mouse button
state. This routine might for example be used to translate button combinations,
so that a mouse with 4 buttons could be made to work as two identical button

pairs.

All registers must be saved, so the code would have to be in assembler rather
than Prospero C. The function returns the old value of the button change
vector via the parameter savcode, so that this can be restored when the
application has completed, or when normal button function is to be restored.

For 68000 family processors, the application's code is invoked with interrupts
disabled, by a JSR instruction. The code should execute without enabling
interrupts, and return with a RTS instruction when done. The register DO.w
contains the new mouse button state - this may be modified by the routine to
indicate what button state is to be saved by the driver. All other registers must
be preserved.

For 8086 family processors, the application's code is invoked with interrupts
disabled, by a FAR CALL instruction. The code should execute without
enabling interrupts, and return with a FAR RET instruction when done. The
register AX contains the new mouse button state - this may be modified by the
routine to indicate what button state is to be saved by the driver. All other
registers must be preserved.

I

I

I

I

I

I

Section 7 - VDI Input Functions VDI-139

7.10.3 Parameters

Parameter Type of
name parameter

handle

usrcode

savcode

WORD

ENTRY

TYPE

ENTRY

TYPE *~

Parameter description
Function of parameter

Device handle

The handle of the device whose button change
vector is to be set.

Button change routine address

This is the address which GEM VDI will call

when it detects a change in the button state.

Old button change routine

This points to an object which receives the
address of the routine which GEM VDI was

previously calling when the button state
changed. This should be saved by the application
to be used in a subsequent call of vex_butv to
restore normal button operation before
terminating.

7.10.4 Example

WORD screen;

ENTRY_TYPE save_button, my button;

/* Get address of assembler routine in my_button */

/* Cause it to be called when button state changes */
vex_butv(screen, my_button, Ssave button);

/* About to terminate - restore old button routine */

vex_butv(screen, save_button, &save_button);
/* Last parameter not relevant here! */

7 VDI-140 Section 7- VDI Input Functions
7.11 Exchange Mouse Travel Vector vex_motv

This function may be used to cause an assembler coded routine to be entered
every time the mouse moves to a new location.

7.11.1 Definition

The Prospero C definition of Exchange Mouse Travel Vector is :

void vex_motv(WORD handle, ENTRYJTYPE usrcode,
ENTRY_TYPE *savcode);

7.11.2 Purpose

This functioncan be used to provide the addressof an assembler routinewhich
will be called by GEM VDI every time it notices a mouse movement. This
routine might for example be used to scale mouse movements, for example to
make a large mouse movementhave only a small effect.

All registers must be saved, so the code would have to be in assembler rather
than ProsperoC. The function returns the old value of the mouse travel vector
in the parameter savcode, so that this can be restored when the application
has completed, or when normal mouse function is to be restored.

For 68000 family processors, the application's code is invoked with interrupts
disabled, by a JSR instruction. The code should execute without enabling
interrupts, and return with a RTS instruction when done. The registers DO.w
and Dl.w contain the new mouse position - these may be modified by the
routine to indicate what position is to be saved by the driver. All other
registers must be preserved.

For 8086 type processors, the application's code is invoked with interrupts
disabled, by a FAR CALL instruction. The code should execute without
enabling interrupts, and return with a FAR RET instruction when done. The
registers BX andCX contain the newmouse position - these maybe modified
by the routine to indicate what position is to be saved by the driver. All other
registers must be preserved.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Section 7 - VDI Input Functions VDI-141

7.11.3 Parameters

Parameter Type of
name parameter

handle

usrcode

savcode

WORD

ENTRY

TYPE

ENTRY_
TYPE *

Parameter description
Function of parameter

Device handle

The handle of the device whose mouse travel
vector is to be set.

Mouse travel routine address

This is the address which GEM VDI will call
when it detects a mouse travel.

Old mouse travel routine

This points to an object which receives the
address of the routine which GEM VDI was
previously calling when the mouse moved. This
should be saved by the application to be used in a
subsequent call of vex_motv to restore normal
mouse operation before terminating.

7.11.4 Example

WORD screen;

ENTRY_TYPE save_mouse, my_mouse;

/* Get address of assembler routine in my mouse */

/* Cause it to be entered whenever mouse moves */
vex_motv(screen, my_mouse, Ssave mouse);

/* About to terminate - restore normal mouse routine */
vex_motv(screen, save_mouse, Ssave mouse);
/* Last parameter not relevant here '/

7 VDI-142 Section 7- VDI Input Functions
7.12 Exchange Cursor Draw Vector vex_curv

This function may be used to cause an assembler coded routine to be entered
every time GEM VDI is about to redraw the cursor.

7.12.1 Definition

The Prospero C definition of Exchange Cursor Draw Vector is :

void vex_curv(WORD handle, ENTRY_TYPE usrcode,
ENTRY_TYPE *savcode);

7.12.2 Purpose

This function can be used to provide the address of an assembler routine
which will be called by GEM VDI every time it is about to redraw the
mouse cursor. This routine might for example be used to draw a cursor
form which does not conform to the two-color, 16 by 16 pixel image used
by GEM VDI.

All registers must be saved, so the code would have to be in assembler
rather than Prospero C. The function returns the old value of the cursor
draw vector via the parameter savcode, so that this can be restored when
the application has completed, or when normal cursor drawing function is to
be restored.

For 68000 family processors, the application's code is invoked with
interrupts disabled, by a JSR instruction. The code should execute without
enabling interrupts, and return with a RTS instruction when done. The
registers DO.w and Dl.w contain the x and y locations at which the cursor is
to be drawn. If the routine does not cause a cursor to be drawn, it must
perform a JSR to the address returned via the parameter savcode with
DO.w and Dl.w containing the position at which the cursor is to be drawn.
All other registers must be preserved.

For 8086 family processors, the application's code is invoked with interrupts
disabled, by a FAR CALL instruction. The code should execute without
enabling interrupts, and return with a FAR RET instructionwhen done. The
registers BX and CX contain the x and y locations at which the cursor is to
be drawn. If the routine does not cause a cursor to be drawn, it must
perform a CALL (FAR) to the address returned via the parameter savcode
with BX and CX containing the position at which the cursor is to be drawn.
All other registers must be preserved.

I

I

I

I

I

I

I

I

Section 7 - VDI Input Functions VDI-143

7.12.3 Parameters

Parameter Type of
name parameter

handle

usrcode

savcode

WORD

ENTRY

TYPE

ENTRY

TYPE *'

Parameter description
Function of parameter

Device handle

The handle of the device whose cursor draw
vector is to be set.

Cursor draw routine address

This is the address of the routine which GEM
VDI will call when it is about to draw the

cursor.

Old cursor draw routine

This points to an object which will receive the
address of the routine which GEM VDI was
previously calling to draw the cursor. This
should be saved by the application to be used in a
subsequent call of vex_curv to restore normal
cursor operation before terminating.

7.12.4 Example

WORD screen;

ENTRY TYPE save cursor, my_cursor

/* Get address of assembler routine in my__cursor */

/* Cause it to be called when cursor is to be drawn */
vex curv(screen, my cursor, Ssave_cursor);

/* About to terminate - restore old cursor routine */
vex curv(screen, save_cursor, Ssave_cursor);
/* Last parameter not relevant here! */

~Z VDI-144 Section 7 - VDI Input Functions

7.13 Sample Keyboard State vq key s

This function may be used to discover the current state of the shift, control,
and ALT keys.

7.13.1 Definition

The Prospero C definition of Sample Keyboard State is :

void vq_key_s(WORD handle, WORD *status);

7.13.2 Purpose

This function is used to return the state (up or down) of the shift, control and
ALT keys, so that they can for example be used to modify the effect of mouse
actions. Note that applications which use the GEM AES should use the
graf_mkstate routine described in the AES manual section 8, which
performs a similar function.

7.13.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose keyboard state is
to be returned.

status WORD * Key status

This parameter points to an object which
receives a map of which of the relevant keys are
depressed. Each bit corresponds to a particular
key, with a bit value of 1 indicating the
corresponding key is depressed. The bits are
assigned as follows :-

0 (0000 binary) - No buttons down
1 (0001 binary) - Right hand shift down
2 (0010 binary) - Left hand shift down
4 (0100 binary) - Control key down
8 (1000 binary) - ALT key down

These values may be combined to indicate that a
combination of the above keys are pressed.

I

I

Section 7 - VDI Input Functions VDI-145

7.13.4 Example

WORD screen;

WORD state;

do {

/* Get keyboard state */
vq_key_s(screen, sstate);

} while (state != 4); /* Wait until Ctrl key
pressed */

~7 VDI-146 Section 8 - VDI Inquire Functions

8 VDI INQUIRE FUNCTIONS

This section contains detailed descriptions of the VDI Inquire functions, in the
following sub-sections.

Section Function description Binding name

8.1 Extended Inquire vq_extnd

8.2 Inquire Color Representation vq_color

8.3 Inquire Line Attributes vql_attributes

8.4 Inquire Marker Attributes vqm_attributes

8.5 Inquire Fill Attributes vqf_attributes

8.6 Inquire Text Attributes vqt_attributes

8.7 InquireText Extent vqt_extent

8.8 Inquire Character Cell Width vqtwidth

8.9 Inquire Font Name and Index vqt_name

8.10 Inquire Cell Array vq_cellarray

8.11 Inquire InputMode vqin_mode

8.12 Inquire Font Info vqt_font_info

8.13 Inquire Justified Graphic Text vqt_justif ied

The functions described in this section are concerned with obtaining
information about the current settings of GEM VDI attributes which affect the
output produced using the functions described in section 4, and other
information which might be of use to a program which needs to know
precisely how its output will appear. Most of the functions in this section test
values which can be altered using the attribute functions described in section 5
- further details of the meanings of these values can be found under the
corresponding functions in that section.

I

I

I

I

I

I

I

I

I

Section 8 - VDI Inquire Functions VDI-147

8.1 Extended Inquire vq extnd

This can be used to obtain further information about a workstation, in addition
to that returned by the function v_opnwk or v_opnvwk when the workstation
was opened.

8.1.1 Definition

The Prospero C definition of Extended Inquire is:

void vq_extnd(WORD handle, WORD einqflag,
WORD work out [57]) ;

8.1.2 Purpose

This function is used to return a number of additional items of information

about the specified workstation. It may also be used to return the same
information as returned by v_opnwk or v_opnvwk when the workstation was
opened, which might be useful when for example the program currently
running did not open the workstation itself, but 'inherited' it from a parent
program.

8.1.3 Parameters

Parameter Type of
name parameter

handle WORD

einqflag WORD

Parameter description
Function of parameter

Device handle

The handle of the device about which the

application is inquiring.

Extended inquire flag

If the value of this parameter is 0, the
information returned is exactly the same as that
returned by the v_opnwk or v_opnvwk
functions -see section 3.1. However, if the
value of this parameter is non-zero, a new set of
information is returned as described below.

f VDI-148 Section 8- VDI Inquire Functions
workout WORD[57] Workstation information

This is an array[57] of WORD. If the parameter
einqflag has the value 0, the values assigned
to work_out are as described under v_opnwk
in section 3.1. If einqflag is non-zero, the
information returned is as follows :-

work__out [0] Type of screen
0 Not a screen device

1 Separate alpha and graphic controllers
and screens

2 Separate alpha and graphic controllers
with a common screen

3 Common alpha and graphic
controllers with separate image
memory

4 Common alpha and graphic
controllers and image memory

work_out [1] Number of background colors available in color
palette

work_out [2] Text effects supported (see vst_ef fects in
section 5.15)

work_out [3] Raster scaling supported (0 = no, 1 = yes)

work_out [4] Number of planes

work_out [5] Lookup table supported (0 = no, 1 = yes)

work_out[6] Performance rate, in 16 x 16 raster-ops per
second

work_out [7] Contour fill capability (0 = no, 1 = yes)

work_out [8] Text rotation capability :-
0 - none

1-90 degree angles only
2 - arbitrary angles

work_out [9] Number of available writing modes

work_out [10] Input modes available :-
0 - none

1 - request
2 - sample and request

I

Section 8 - VDI Inquire Functions VDI-149

I

work_out[11]

work_out[12]

work out [13]

1
work _out [14]

work out[15]

1
work _out [16]

1
work

work

out [17]

out [18]

1 work out [19]

1 work

work

out [20] to

out [44]

1
work _out [45]

1 work out [4 6]

work__out [4 7]

work out [41

work_out [4 9] to
work out [56]

Text alignment capability (0 = no, 1 = yes)

Inking capability (0 = no, 1 = yes)

Rubber banding capability :-
0 - none

1 - lines only
2 - lines and rectangles

Maximum vertices for polyline, polymarker or
filled polygon (-1 = no limit)

Maximum size of VDI_intin array (-1 = no
limit)

Number of keys available on the mouse

Styles work on wide lines (0 = no, 1 = yes)

Writing modes available for wide lines (0 = no,
1 = yes)

Clipping currently enabled (0 = no, 1 = yes)
(In GEM versions 2.0and later)

Reserved (contain zeros)

X coordinate of upper left comer of clipping
rectangle in x axis units.
(In GEM versions 2.0 and later)

Y coordinate of upper left comer of clipping
rectangle in y axis units.
(In GEM versions 2.0 and later)

X coordinate of lower right comer of clipping
rectangle in x axis units.
(In GEM versions 2.0 and later)

Y coordinate of lower right comer of clipping
rectangle in y axis units.
(In GEM versions 2.0 and later)

Reserved (contain zeros)

~7 VDI-150 Section 8 - VDI Inquire Functions

8.1.4 Example

WORD screen;

WORD work out [57]

vq_extnd(screen, 1, work_out);
if (work_out[13] == 2)
{ /* Can do rubberbands, so use them */

I

I

I ^ Section 8- VDI Inquire Functions VDI-151
8.2 Inquire Color Representation vq_color

I
This can be used to obtain the intensities of red, green and blue with which a
given color index is displayed.

8.2.1 Definition

The Prospero C definition of Inquire Color Representation is :

void vq_color(WORD handle, WORD index, WORD setflag,
WORD rgb[3]);

|
•— 8.2.2 Purpose

This function may be used to determine the red, green and blue intensities
associated with the given color index. Two sets of intensities are available,
those requested by a call to vs_color (section 5.2), or those actually realized,
which will normally be the closest available values to those requested.

I

I

I

I

I

~y VDI-152
8.2.3 Parameters

Parameter Type of
name parameter

handle WORD

index WORD

setflag WORD

rgb WORD[3]

8.2.4 Example

WORD screen;

WORD colors[3];

Section 8 - VDI Inquire Functions

Parameter description
Function of parameter

Device handle

The handle of the device about which the

application is inquiring.

Color index

The index of the color about which the

application is inquiring.

Realized value flag

If the value of this parameter is zero, the
information returned is the requested
intensities, as passed to the last call of
vs_color (see section 5.2). If this parameter is
1, the values returned will be the intensities of
the color as it is actually displayed on the device.

Red green blue intensities

This is an array of 3 WORDs, whose elements
return the intensities in tenths of a percent (0 to
1000) as follows :-

rgb [0] - Red intensity
rgb [1] - Green intensity
rgb [2] - Blue intensity

/* Get displayed intensities of color index 1 */
vq_color(screen, 1, 1, colors);

I

I

f

I

I

I

I

I

I

1

I

I

I

I

I

[

Section 8 - VDI Inquire Functions VDI-153

8.3 Inquire Line Attributes vql_attributes

This can be used to obtain the current settings of the attributes affecting the
way that lines are output.

8.3.1 Definition

The Prospero C definition of Inquire Line Attributes is :

void vql_attributes(WORD handle, WORD attrib[6]);

8.3.2 Purpose

This function may be used to obtain the current settings of the line type, line
color, writing mode, line width, beginning line end style and ending line end
style. See the relevant functions in section 5 for how the drawing of lines is
affected by the settings of the various attributes. The values are returned in an
array[6] of WORD, defined as follows :-

attrib[0] line type see vsl_type in section 5.3
attrib[l] line color see vsl_color in section 5.6
attrib[2] writing mode see vswr_mode in section 5.1
attrib[3] line width see vsl_width in section 5.5
attrib[4] beginning style
attrib[5] ending style see vsl_ends in section 5.7

Note that the original C language bindings supplied with the GEM
Programmer's Toolkit do not return the beginning and ending line end styles.

~y VDI-154 Section 8 - VDI Inquire Functions

8.3.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle

attrib

WORD Device handle

The handle of the device about which the

application is inquiring.

WORD[6] Line attributes

This is an array as described above, used to
return the current settings of the line attributes.

The values returned are in the same form, and
with the same meanings, as those passed to the
corresponding set attributes routine described
in section 5. The original C language bindings
supplied with the GEM Programmer's toolkit
do not return the beginning and ending line
styles.

8.3.4 Example

WORD screen;

WORD attributes[6]

/* Get line attributes */

vql_attributes(screen, attributes);

/* Select color 3 if necessary */
if (attributes[1] > 3)

attributes [1] = vsl color (screen, 3)

I

" Section 8 - VDI Inquire Functions VDI-155

8.4 Inquire Marker Attributes vqm_attributes

This can be used to obtain the current settings of the attributes affecting the
way that polymarkers are output.

8.4.1 Definition

The Prospero C definition of Inquire Marker Attributes is :

void vqm_attributes(WORD handle, WORD attrib[5]);

8.4.2 Purpose

II This function may be used to obtain the current settings of the marker type,
marker color, writing mode, marker height and marker width. See the
relevant functions in section 5 for how the drawing of polymarkers is affected
by the settings of the various attributes. The attributes are returned in an
array[5] of WORD as follows :-

attrib[0] marker type see vsm_type in section 5.8
attrib[l] marker color see vsm_color in section 5.10
attrib[2] writing mode see vswr_mode in section 5.1

Cattrib[3] height
attrib[4] width see vsm_height in section 5.9

Note that the original C language bindings supplied with the GEM
Programmer's Toolkit do not return the marker width.

I

I

I

I

I

I

"7 VDI-156 Section 8 - VDI Inquire Functions

8.4.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle

attrib

WORD Device handle

The handle of the device about which the

application is inquiring.

WORD[5] Marker attributes

This is an array as described above, used to
return the state of the various attributes
affecting polymarker output.

The values returned are in the same form, and
with the same meanings, as those passed to the
corresponding set attributes routine in section 5.
The polymarker width cannot be explicitly set,
but is determined by the height selected using
the vsm_height function described in section
5.9. The original C language bindings supplied
with the GEM Programmer's Toolkit do not
return the marker width.

8.4.4 Example

WORD screen;

WORD attributes [5]

/* Get marker attributes */

vqm_attributes(screen, attributes);

if (attributes[4] < 5) /* Not big enough */
attributes [3] = vsm_height(screen, 10);

I

Section 8 - VDI Inquire Functions VDI-157

8.5 Inquire Fill Attributes vqf_attributes

This can be used to obtain the current settings of the attributes affecting the
way that filled areas are output.

8.5.1 Definition

The Prospero C definition of Inquire Fill Attributes is :

void vqf_attributes(WORD handle, WORD attrib[5]);

8.5.2 Purpose

This function may be used to obtain the current settings of the fill interior
mode, fill interior color, fill interior pattern style, and fill perimeter visibility
flag. See the relevant functions in section 5 for how the drawing of filled areas
is affected by the settings of the various attributes. The attributes are returned
in an array[5] of WORD as follows:-

attrib[0] fill interior see vsf_interior in section 5.17
attrib[l] fill color see vsf color in section 5.19
attrib[2] fill style see vsf_style in section 5.18
attrib[3] writing mode see vswr_mode in section 5.1
attrib[4] perimeter flag see vsfperimeter in section 5.20

Note that the original C language bindings supplied with the GEM
Programmer's Toolkit do not return the fill perimeter visibility flag.

~7 VDI-158
8.5.3 Parameters

Parameter Type of
name parameter

Section 8 - VDI Inquire Functions

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device about which the

application is inquiring.

attrib WORD[5] Fill attributes

This is an array as described above, used to
return the state of the attributes affecting the
output of filled areas.

The values returned are in the same form, and
with the same meanings, as those passed to the
corresponding set attributes routine in section 5.
The original C language bindings supplied with
the GEM Programmer's toolkit do not return
the perimeter visibility flag.

8.5.4 Example

WORD screen;

WORD attributes[5],

/* Get fill attributes */

vqf_attributes(screen, attributes);
if (attributes [2] == 4)

/* Not a nice style - change it*/
attributes [2] = vsf_style(screen, 3)

I

I

!

I

I

I

I

I

I

i

Section 8 -VDI Inquire Functions VDI-159

8.6 Inquire Text Attributes vqt attributes

This can be used to obtain the current settings of the attributes affecting the
way that text is output.

8.6.1 Definition

The Prospero C definition of Inquire Text Attributes is :

void vqt_attributes(WORD handle, WORD attrib[10]);

8.6.2 Purpose

This function may be used to obtain the current settings of the text font, text
color, text baseline angle, text alignment, and character and character cell
sizes. See the relevant functions in section 5 for how the output of text is
affected by the settings of the various attributes. The values are returned in an
array[10] of WORD, defined as follows :-

attr

attr

attr

attr

attr

attr

attr

attr

attr

attr

ib[0]

ib[l]

ib[2]

ib[3]
ib[4]
ib[5]

ib[6]

ib[7]
ib[8]

ib[9]

text face

text color

baseline

horiz align
vert align
writing mode
char width

char height
cell width

cell height

see vst_font in section 5.13
see vst_color in section 5.14
see vst_rotation in section 5.12

see vst_alignment in section 5.16
see vswr mode in section 5.1

see vst height in section 5.11

~7 VDI-160 Section 8 - VDI Inquire Functions

8.6.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle

attrib

WORD Device handle

The handle of the device about which the

application is inquiring.

WORD[10] Text attributes

This is an array as described above, used to
return the current state of all attributes affecting
text output.

The values returned are in the same form, and
with the same meanings, as those passed to the
corresponding set attributes routine in section 5.
Elements attrib [6] and attrib [7] return
the current character width and height, while
attrib [8] and attrib [9] return the width
and height of a character cell, all in the current
coordinate system (see vst_point or
vst_height in section 5.11).

8.6.4 Example

WORD screen;

WORD attributes[10]

/* Get text attributes */

vqt_attributes(screen, attributes);

if (attributes[2] != 0)
/* stop writing at an angle */
attributes [2] = vst rotation(screen, 0)

!

I

I

!

1

I

I

I

I

I

I

I

I

Section 8 - VDI Inquire Functions VDI-161

8.7 Inquire Text Extent vqt_extent

This can be used to discover the area which would be occupied by a given text
string, if output using the current text attributes.

8.7.1 Definition

The Prospero C definition of Inquire Text Extent is :

void vqt_extent(WORD handle, const char *astring,
WORD extent[8]);

8.7.2 Purpose

This function may be used to obtain the coordinates of the rectangle which
would completely contain the given text if output using the current text
attributes. As this takes account of the text baseline rotation (see
vst_rotation in section 5.12), the rectangle may not be parallel to the x and
y axes, and therefore the coordinates of all four vertices are required to define
it. The rectangle returned always touches the x and y axes at the lower left and
upper left comers respectively.

~7 VDI-162
8.7.3 Parameters

Parameter Type of
name parameter

Section 8 - VDI Inquire Functions

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device about which the

application is inquiring.

astring const char* String

This is a string containing the text whose extent
is to be returned.

extent WORD[8] Extent bounding rectangle

This is an array containing the coordinates of
the four comers which define the text extent
rectangl. Each point is described by two
consecutive elements of the array; the points are
in the order-

Lower left,
Lower right,
Upper right,
Upper left.

Note that the values of lower left y co-ordinate
and upper left x co-ordinate will always be zero.

8.7.4 Example

WORD screen;

WORD extent[8];

WORD string_length;

extent)

/* Get text extent */
vqt_extent(screen, "Hello There",
string_length = extent [4];
/* Valid only if rotation zero! */

I

I

I

1

I

I

Section 8 - VDI Inquire Functions VDI-163

8.8 Inquire Character Cell Width vqt width

This can be used to discover the character cell width of a specified character in
the current text font.

8.8.1 Definition

The Prospero C definition of Inquire Character Cell Width is :

WORD vqt_width(WORD handle, WORD character,
WORD *cell_width,
WORD *left_delta, WORD *right_delta);

8.8.2 Purpose

This function may be used to obtain the width of the specified character in the
current text font. The character cell width is the distance from the left hand
edge of the character to the left hand edge of the following character in a
string. This function does not take account of text special effects or rotation.
The function also returns the distance from the left hand edge of the character
cell to the lefthand edge of the character, and the distance from the right hand
edge of the character to the right hand edge of the character cell - these are
known as the left and right alignment deltas. All distances are measured in the
current coordinate system.

Left Character Right Character
Alignment Alignment

Delta Delta

Top Line

K
Half Line

Base Line

Bottom Line

^
^Character Width

' Cell Width

Character Alignment Deltas

~7 VDI-164 Section 8 - VDI Inquire Functions

8.8.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

handle WORD Device handle

The handle of the device about which the

application is inquiring.

character WORD Character

The character whose width is to be returned.

cell width WORD * Character cell width

left_delta WORD *
right_delta WORD *

Points to an object which receives the width of
the cell enclosing the specified character - the
distance between the left hand edge of the
character and the left hand edge of the next
character in a string.

Left character alignment delta
Right character alignment delta

These parameters points to objects which
receive the distances between the left and right
hand edges of the character cell and the left and
right hand edges of the character.

8.8.4 Function Result

The function returns the ASCII code of the character in question, or -1 if it
was not a valid character in the font.

8.8.5 Example

WORD screen;

WORD cell, left, right;

vqt width(screen, 'H1, Scell, Sleft, Sright)

I

1

I

I

"7 Section 8 - VDI Inquire Functions VDI-165

8.9 Inquire Font Name and Index vqt_name

This can be used to discover the name and index of a particular text font.

8.9.1 Definition

The Prospero C definition of Inquire Font Name and Index is :

WORD vqt_name(WORD handle, WORD element,
char name[33]);

8.9.2 Purpose

This function may be used to obtain the name and index of a particular text
font, which are also referred to as faces in GEM VDI. The font is referred to
by its element number - this ranges from 1 to the number of fonts available.
However font element 1 is reserved for the system font, which may not always
be available on all drivers - this can be determined from the value of
work_out [10] when a workstation is opened (see section 3.1). The function
returns the name of the font, and the font index, which is the value which must
be passed to the vstfont function described in section 5.13. Font indices are
constant for a given font, so that font index 4 is always Swiss 721 Thin Italic.
However the element number of this font depends upon what other fonts are
listed in ASSIGN.SYS and in what order. This function may be used to
determine which fonts are available by calling it for every element number
available.

VDI-166

8.9.3 Parameters

Parameter Type of
name parameter

Section 8 - VDI Inquire Functions

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device about which the

application is inquiring.

element WORD Font element number

This is the element number of the font whose

name and index is to be returned.

name char [33] Font name

This returns the name and description of the
font, as a string of up to 32 characters. The first
16 characters of the string contain the name of
the font, padded with blanks. The characters
from 17 to the null terminator of the string
describe the style, such as light, italic, bold, and
so on.

8.9.4 Function Result

The function returns the font index of the font whose element number was

specified.

8.9.5 Example

WORD screen;

WORD index[20] ;

char [20][33] names;

int total_fonts, i;

for (i = 0; i < total_fonts; i++)
index[i] = vqt_name(screen, i, names[i])

I

Section 8 - VDI Inquire Functions VDI-167

8.10 Inquire Cell Array vq_cellarray

This can be used to return the cell array definition of an area of the display.

8.10.1 Definition

The Prospero C definition of Inquire Cell Array is :

void vq_cellarray(WORD handle, WORD xyarray[4],
WORD row_length, WORD num_rows,
WORD *el_used, WORD *rows_used,
WORD *status, WORD colarray[]);

8.10.2 Purpose

This function may be used to return the cell array definition of the specified
area of the display. This returns an array, each element of which corresponds
to a pixel, and contains the color index of that pixel. The cell array can then be
written to another portion of the display using the v_cellarray function
described in section 4.5.

8.10.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device whose cell array is to
be returned.

xyarray WORD[4] Rectangle

row_length WORD

This defines the area of the display whose cell
array definition is to be returned, in the
standard VDI rectangle form giving the
coordinates of two diagonally opposite comers.

Row length

This defines the length in words of each row in
the color index array. Rows of color indices are
stored sequentially in the array.

~7 VDI-168
num rows WORD

el used WORD *

rows used WORD *

status WORD *

colarray WORD[]

Section 8 - VDI Inquire Functions

Number of rows

This defines the number of rows of length
row_length the color index array contains.
The number of elements in the color index
array must be at least row_length *
num rows.

Elements used per row

This points to an object which receives the
number of pixel values actually placed in each
row of the color index array. This will be the
width in pixels of the display area defined by
xyarray, or the value of row_length,
whichever is smaller. If the number used is less
than the length of each row in the color index
array, unused elements in each row will be
undefined.

Number of rows used

This points to an object which receives the
number of rows actually placed in the color
index array. This will be the height in pixels of
the display area defined by xyarray, or the
value of num_rows, whichever is smaller. If
the number used is less than the number of rows

in the color index array, unused rows will be
undefined.

Error status

This points to an object which receives non-zero
if the color index of some pixel(s) could not be
determined (e.g. the pixel does not exist),
otherwise zero.

Color index array

This is used to pass the array which is to contain
the color indices.

" Section 8 - VDI Inquire Functions VDI-169
8.10.4 Example

WORD screen;

WORD rows_used, els used;
WORD rect[] = { 1007 100, 120, 120 };
WORD problems;

WORD color_array[21][21];

vq_cellarray(screen, rect, 21, 21, &els_used,
&rows_used, Sproblems, color_array)

if (Iproblems)
{ /* Use color index array */

I i

I

I

~y vdi- 170 Section 8 - VDI Inquire Functions

8.11 Inquire Input Mode vqin mode

This can be used to obtain the input mode (request or sample) currently in use
for the specified logical input device.

8.11.1 Definition

The Prospero C definition of Inquire Input Mode is :

void vqin_mode(WORD handle, WORD dev_type,
WORD *mode);

8.11.2 Purpose

This function may be used to obtain the current input mode (request or sample)
for any of the logical input devices (locator, valuator, choice and string input
devices). See section 7 for a description of how the input mode affects the
behavior of each input device.

8.11.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device about which the

program is inquiring.

dev_type WORD Logical device type

This is a two-byte integer indicating which of
the four logical input devices the application is
inquiring about :-

1 - Locator device

2 - Valuator device

3 - Choice device

4 - String device

I

I

I

Section 8 - VDI Inquire Functions VDI-171

mode WORD * Input mode

This parameter points to an object which
receives the device's input mode :-

1 - request mode
2 - sample mode

8.11.4 Example

WORD screen;

WORD mode;

/* Get locator input mode */
vqin mode(screen, 1, smode);

VDI-172 Section 8 - VDI Inquire Functions

8.12 Inquire Font Info vqt_font_info

This function can be used to obtain size information about the current text font.

8.12.1 Definition

The Prospero C definition of Inquire Font Info is :

void vqt_font_info(WORD handle,
WORD *min_ADE, *max_ADE,
WORD distances[5], WORD *maxwidth,
WORD effects [3]);

8.12.2 Purpose

Thisfunction maybe used to obtain information about the sizeof characters in
thecurrently selected textfont, taking intoaccount the current text effects and
text size. Height information about the current font is returned in an array[5]
of WORD, defined as follows :-

distance [0] depth of bottom line
distance [1] depth of descenders
distance [2] height of half line
distance [3] height of ascent line
distance [4] height of top line

All the above values are in y-axis units measured from the character baseline.
See section 5.16 for further information about these values.

The function also returns information about the effect that the current text
effects (see section 5.15) have on the characters, in an array[3] of WORD,
defined as follows :-

effects [0] deltax
effects [1] left offset
effects [2] right offset

The delta x is the increase in character cell width caused by the text effects
currently in force. The left offset and the right offset apply to skewed special
effects, as shown in the diagram.

Right Offset
Left Offset

These values are in x-axis units.

I

I

I

I

I

Section 8 - VDI Inquire Functions VDI-173

8.12.3 Parameters

Parameter Type of
name parameter

handle

min_ADE
max ADE

WORD

WORD *

WORD *

distances W0RD[5]

maxwidth WORD *

effects WORD[3]

Parameter description
Function of parameter

Device handle

The handle of the device about which the
application is inquiring.

First character in font

Last character in font

These point to objects which receive the first
and last characters in the font.

Font distance information

This is an array as described above, returning
information about the heights of characters in
the font.

Maximum character cell width

This points to an object which receives the
maximum character cell width in the font, in x-
axis units, excluding the effects of any special
effects such as italics, holding etc.

Font effects information

This is an array as described above, returning
information about the changes to character
widths due to the current text special effects.

8.12.4 Example

WORD screen;

WORD min, max;

WORD biggest;

WORD my_distances[5];
WORD my effects [3];

vqt_font_info(screen, Smin, Smax, my_distances,
Sbiggest, my_effects);

/* Calculate some things from the font information */

~7 VDI-174 Section 8 - VDI Inquire Functions

8.13 Inquire Justified Graphic Text vqt_justified

This can be used to obtain the positionof each character of a text string output
using the vjustif ied function described in section 4.14. This function is
not available in GEM version 1.1.

8.13.1 Definition

The Prospero C definition of Inquire Justified Graphic Text is :

void vqt_justified(WORD handle, WORD x, WORD y,
const char *astring, WORD len,
WORD word_space, WORD char_space,
WORD offsets[]);

8.13.2 Purpose

This function may be used to obtain the x and y coordinates of each character
ina text string output using the v_justif ied function (see section 4.14) and
the current text attributes.

8.13.3 Parameters

Parameter Type of
name parameter

handle

x

y

WORD

WORD
WORD

Parameter description
Function of parameter

Device handle

The handle of the device about which the
application is inquiring.

X coordinate

Y coordinate

These are used to define the coordinates of the
alignment point of the whole string, as passed to
vjustif ied.

astring const char* Output string

This contains the string whose character offsets
are to be returned, as passed to v_ justified.

I

[

I

I

I

I

I

I

I

I

I

I

I

I

I

Section 8-VDI Inquire Functions VDI-175

len WORD String justification length

The length to which the string is justified, as
passed to v__just if ied.

word_space WORD
char_space WORD

Word space modify flag
Character space modify flag

These indicate whether the inter-word spacing,
the inter-character spacing or both are modified
(1 means modify; 0 means don't modify) to
justify the text, as passed to v_ just ified.

offsets WORD[] Character offsets information

This parameter specifies the array in which the
coordinates of each character will be returned.

8.13.4 Example

WORD screen;

WORD char posit ions[160];

/* Output some text */
v_justified(screen, 100, 100, "A bit of text",

100, 1, 1)

/* Find where each character went */

vqt_justified(screen, 100, 100, "A bit of text"
100, 1, 1, char positions)

~7 VDI-176 Section 9 - VDI Escape Functions

9 VDI ESCAPES

GEM VDI provides a number of functions which are specific to a particular
device or class of device. These are known as escapes, and are all called using
the same GEM VDI op-code, with the required function indicated by a sub-
opcode (all this is handled internally by the bindings, and need not concern the
programmer). Other GEM VDI device drivers may provide additional device
dependent escapes, and not all devices will support the escapes described in this
section. The escapes described here can be classed according to the devices they
are relevant to as follows.

Cursor Addressable Screen Escapes

Section Function description

9.1 Inquire Alpha Character Cells

9.2 Exit Alpha Mode

9.3 Enter Alpha Mode

9.4 Move Alpha Cursor

9.5 Home Alpha Cursor

9.6 Erase to End of Alpha Screen

9.7 Erase to End of Alpha Line

9.8 Set Alpha Cursor Address

9.9 Output Alpha Text

9.10 Select Alpha Text Style

9.11 Inquire Alpha Cursor Address

General Screen Escapes

Section Function description

9.12 Inquire Tablet Status

9.13 Hardcopy

9.14 Place and Remove Graphic Cursor

Binding name

vq_chcells

v_exit_cur

v_enter_cur

v__curup

v_curdown
v_curright
v_curleft

v_curhome

v_eeos

v_eeol

vs_curaddress

v_curtext

v_rvon

v_rvoff

vq_curaddress

Binding name

vq_tabstatus

v_hardcopy

v_dspcur
v rmcur

" Section 9 - VDI Escape Functions VDI-177

Printer Escapes

Section Function description Binding name

9.15 Form Advance v form adv

9.16 Output Window to Printer v output window

9.17 Clear Printer Display List v clear disp list

9.18 Output Bit Image File v bit image 1
v bit image 2

9.19 Inquire Printer Scan Heights vq scan

9.20 Output Printer Alpha Text v alpha text

I

I

I

I

[

I

Device Specific Escapes

Section Function description

9.21 Select Palette

9.22 Generate Tone

9.23 Set / Clear Muting Flag

Tablet Escapes

Section Function description

9.24 Set Tablet Resolution

9.25 Set Tablet Origin

9.26 Inquire Tablet Dimensions

9.27 Set Tablet Alignment

GEM Version 2.0 Film Recorder Escapes

Section Function description

9.28 Select Camera Film Type

9.29 Inquire Camera Film Name

9.30 Disable or Enable Film Exposure

Binding name

vs_palette

v_sound

vs mute

Binding name

vt_resolution
vt_axis

vt origin

vq_tdimensions

vt_alignment

Binding name

vsp_film

vqp filmname

vsc expose

~7 VDI-178 Section 9 - VDI Escape Functions

GEM Version 1.1 Film Recorder Escapes

Section Function description

9.31 Inquire Film Types

Inquire and Set Palette Driver State9.32

9.33

9.34

9.35

Save Palette Driver State

Suppress Palette Messages

Palette Error Inquire

Metafile Escapes

Section Function description

9.36 Update Metafile Extents

9.37 Write Metafile Item

9.38 Change GEM VDI Filename

Binding name

vqp_films

vqp_state
vsp_state

vsp_save

vsp_message

vqp_error

Binding name

v_meta_extents

v_write_meta

vm filename

I

I

I

I

1

I

I

Section 9 - VDI Escape Functions VDI-179

9.1 Inquire Alpha Character Cells vq chcells

As well as the graphics (bit mapped) screen supported by the GEM output
functions iisted in section 4, GEM VDI may be used to send text output to a
character based screen (or a screen in character mode). This function can be
used to obtain the dimensions in rows and columns of the screen - the
following sections detail the operations GEM supports on such a screen.

9.1.1 Definition

The Prospero C definition of Inquire Alpha Character Cells is :

void vq_chcells(WORD handle,
WORD *rows, WORD *columns);

9.1.2 Purpose

This function is used to discover the width and height, in characters, of the
alphanumeric cursor addressable screen. If cursor addressing is not possible,
the width and height returned are -1.

9.1.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the screen device.

rows WORD * Number of rows in screen

Points to an object which returns the number of
rows that can be addressed by the cursor. A
value of -1 indicates cursor addressing is not
possible.

columns WORD * Number of columns in screen

Points to an object which returns the number of
columns that can be addressed by the cursor. A
value of -1 indicates cursor addressing is not
possible.

~7 VDI-180
9.1.4 Example

WORD screen;

WORD rows, columns;

Section 9 - VDI Escape Functions

vq_chcells(screen, Srows, {.columns);
if ((rows != -1) && (columns != -1))

{ /* Can do cursor addressing */

!

I

I

I

I

I

I

I

I

Section 9 - VDI Escape Functions VDI-181

9.2 Exit Alpha Mode

This can be used to exit cursor addressable alphanumeric mode on a screen
device, and return to graphics mode.

v exit cur

9.2.1 Definition

The Prospero C definition of Exit Alpha Mode is

void v exit cur(WORD handle);

9.2.2 Purpose

This function is used to change properly from alphanumeric, cursor
addressable text mode to graphics mode, if they are different. The graphics
screen will be cleared. When a screen workstation is opened, it will be placed
in graphics mode.

9.2.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the screen device.

9.2.4 Example

WORD screen;

v_exit_cur(screen);
/* Do some graphics output */

~7 VDI-182 Section 9 - VDI Escape Functions

9.3 Enter Alpha Mode v_enter_cur

This function can be used to enter cursor addressable alphanumeric mode, and
leave graphics mode.

9.3.1 Definition

The Prospero C definition of Enter Alpha Mode is :

void v_enter_cur(WORD handle);

9.3.2 Purpose

This function is used to change properly from graphics mode to alphanumeric,
cursor addressable text mode, if they are different. The alpha screen will be
cleared, and the alpha cursor placed at the home position (top left hand
corner).

9.3.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the screen device.

9.3.4 Example

WORD screen;

v_enter_cur(screen) ;
/* Do some alpha type output */

I

I

I

I

I

I

1

I

I

[

I

I

I

Section 9 - VDI Escape Functions VDI-183

9.4 Move Alpha Cursor v_curup
v_curdown

v_curright
v curleft

These can be used to move the cursor in alpha mode.

9.4.1 Definition

The Prospero C definitions of the Move Alpha Cursor functions are

void v_curup(WORD handle);
void v_curdown(WORD handle);
void v_curright(WORD handle);
void v curleft(WORD handle);

9.4.2 Purpose

These functions are used to move the alpha cursor one character position up,
down, left or right respectively. If the cursor is already at the edge of the
screen, nothing happens.

9.4.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the screen device.

9.4.4 Example

WORD screen;

int i ;

v_enter_cur(screen); /* also homes cursor */
for (i = 1; i <= 9; i++)

v__curdown (screen) ;
for (i = 1; i <= 9; i++)

v_curright(screen);/* slow way to move to (10,10)*/

~7 VDI-184 Section 9 - VDI Escape Functions

9.5 Home Alpha Cursor v_curhome

This can be used to move the cursor to the home position in alpha mode.

9.5.1 Definition

The Prospero C definition of Home Alpha Cursor is :

void v curhome(WORD handle);

9.5.2 Purpose

This function is used to move the alpha cursor to the home position, at the top
left hand corner of the screen. Note that the cursor will be placed in this
position when alpha mode is entered by the v_enter_cur function (section
9.3).

9.5.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the screen device.

9.5.4 Example

WORD screen;

v curhome(screen); /* home cursor */

I

I

I

I

i

I

I

I

I

I

I

Section 9 - VDI Escape Functions VDI-185

9.6 Erase to End of Alpha Screen v eeos

This can be used to erase the alpha screen from the current cursor position
onwards.

9.6.1 Definition

The Prospero C definition of Erase to End of Alpha Screen is :

void v_eeos(WORD handle);

9.6.2 Purpose

This function is used to erase the alpha screen from the current cursor position
onwards. The cursor position is not changed. To erase the entire screen, this
could be preceded by a call to v_curhome (section 9.5).

9.6.3 Parameters

Parameter Type of
name parameter

handle WORD

9.6.4 Example

WORD screen;

v^curhome(screen)
v eeos (screen);

Parameter description
Function of parameter

Device handle

The handle of the screen device.

/* home cursor */

/* and erase entire display */

"7 VDI-186 Section 9 - VDI Escape Functions

9.7 Erase to End of Alpha Line v eeol

This can be used to erase the line on the alpha screen containing the cursor,
from the current cursor position onwards.

9.7.1 Definition

The Prospero C definition of Erase to End of Alpha Line is :

void v_eeol(WORD handle);

9.7.2 Purpose

This function is used to erase the line containing the cursor on the alpha screen
from the current cursor position onwards. This might be used before (or after)
outputting text to erase what was previously displayed in that position. The
cursor position is not changed.

9.7.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the screen device.

9.7.4 Example

WORD screen;

v eeol(screen); /* erase to end of line */

Section 9 - VDI Escape Functions

9.8 Set Alpha Cursor Address
VDI-187

vs curaddress

CThis can be used to set the position of the alpha cursor to a particularrow and
column.

I

I

I

I

I

I

I

I

I

I

I

I

I

9.8.1 Definition

The Prospero C definition of Set Alpha Cursor Address is :

void vs^curaddress(WORD handle, WORD row, WORD col)

9.8.2 Purpose

This function is used to set the row and column of the alpha cursor. If the
values are beyond the confines of the screen, the nearest value within the
screen area will be used.

9.8.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the screen device.

row WORD Cursor row

The row at which the cursor is to be placed.

col WORD Cursor column

The column at which the cursor is to be placed.

9.8.4 Example

WOPnD screen;

vs_curaddress(screen, 10, 10);/* cursor to (10,10) */

7 VDI-188 Section 9 - VDI Escape Functions

9.9 Output Alpha Text

This function can be used to output text to the alpha screen.

v curtext

9.9.1 Definition

The Prospero C definition of Output Alpha Text is :

void v_curtext(WORD handle, const char *astring);

9.9.2 Purpose

This function is used to output a text string to the alpha screen at the current
cursor position. The current alpha text attribute will be used - see the functions
vrvon and vrvof f in section 9.10. Alpha mode must have been entered
before text can be output in this manner - see the function ventercur in
section 9.3. The cursor position will be moved as the text is output.

9.9.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the screen device.

astring const char* Output text

The text to be output.

9.9.4 Example

WORD screen;

v_curhome(screen);
v_curtext(screen, "Top left hand corner");
v eeol(screen); /* Clear rest of top line */

I

I

1

I

Section 9 - VDI Escape Functions VDI-189

9.10 Select Alpha Text Style v_rvon
v rvoff

These can be used to select either normal or reverse video text output for the
alpha screen.

9.10.1 Definition

The Prospero C definitions of the Select AlphaText Style functions are :

void v_rvon(WORD handle);
void v_rvoff(WORD handle);

9.10.2 Purpose

These functions are used to select the style for subsequent alpha text output.
The function v_rvon causes subsequent alpha text to be output in reverse
video, while v_rvof f turns off reverse video mode and causes subsequent
text output to be in normal video.

9.10.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the screen device.

9.10.4 Example

WORD screen;

v_rvon(screen);
v^curtext(screen,
v_rvoff(screen) ;
v curtext(screen,

/* Select reverse video */

'Reverse Video ");

/* Select normal video */

'Normal Video ");

~7 VDI-190 Section 9 - VDI Escape Functions

9.11 Inquire Alpha Cursor Address vq_curaddress

This function can be used to discover the position of the alpha cursor.

9.11.1 Definition

The Prospero C definition of Inquire Alpha Cursor Address is :

void vq_curaddress(WORD handle,
WORD *row, WORD *column);

9.11.2 Purpose

This function is used to discover the row and column of the alpha cursor.

9.11.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the screen device.

row WORD * Cursor row

Points to an object which returns the row at
which the cursor is positioned. Row 1 is at the
top of the screen.

column WORD * Cursor column

Points to an object which returns the column at
which the cursor is positioned. Column 1 is at
the left hand edge of the screen.

9.11.4 Example

WORD screen;

WORD row, col;

/* get cursor position */
vq curaddress(screen, &row, &col)

!

I

I

I

I

Section 9 - VDI Escape Functions VDI-191

9.12 Inquire Tablet Status vq_tabstatus

GEM VDI locator input (see section 7.2) becomes very tedious for the user of
a device which does not have a suitable pointer device attached to it, as the
cursor must be moved around the screen using the cursor keys. This function
can be used to discover whether a tablet, mouse etc. is attached to the specified
device.

9.12.1 Definition

The Prospero C definition of Inquire Tablet Status is :

WORD vq_tabstatus(WORD handle);

9.12.2 Purpose

This function is used to discover whether a graphics tablet, mouse, joystick or
similar device is available on the specified device.

9.12.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

I

I

I

I

I

I

handle WORD Device handle

The handle of the device.

9.12.4 Function Result

The function returns 1 if a tablet, mouse, or similar device is available,
otherwise 0.

9.12.5 Example

WORD screen;

if (vq_tabstatus(screen))
{ /* Tablet or mouse available */

"7 VDI-192 Section 9 - VDI Escape Functions

9.13 Hardcopy v_hardcopy

This can be used to make a hard copy of the specified device to an attached
printer or other device.

9.13.1 Definition

The Prospero C definition of Hardcopy is :

void v_hardcopy(WORD handle);

9.13.2 Purpose

This function is used to copy the contentsof the specifieddevice, which should
be a screen device, to an attached printer or other hardcopy device. The
function is devicespecific, and may not be supported by all devices.

9.13.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device.

9.13.4 Example

WORD screen;

Dump sc een image o printer */
=)•- -if V|S r-eer);

I

I

I

I

Section 9 - VDI Escape Functions VDI-193

9.14 Place and Remove Graphic Cursor v_dspcur
v rmcur

These can be used to place a graphic cursor at a specified location, or to
remove the last graphic cursor so placed.

9.14.1 Definition

The Prospero C definitions of Place and Remove Graphic Cursor are :

void v_dspcur(WORD handle, WORD x, WORD y);
void v rmcur(WORD handle);

9.14.2 Purpose

The function vdspcur is used to place a graphic cursor at the specified
coordinate position The form of the cursor is determined by the function
vsc_f orm - see section 7.6. These routines may be used to generate and
remove the cursor form for sample mode locator input - see the function
vsm_locator in section 7.2. These functions are only applicable to devices
capable of locator input.

9.14.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device.

WORD

WORD

9.14.4 Examole

WORD screen

WORD x, y ;

X coordinate

Y coordinate

The x and y coordinates of the point at which the
graphic cursor is to be placed.

v c 'pcur (icreen, x,
v : : cur (s j::een :

/* Place a graphic cursor */
/* Remove it */

~7 VDI-194 Section 9 - VDI Escape Functions

9.15 Form Advance

This can be used to advance the printer page.

v form adv

9.15.1 Definition

The Prospero C definition cf Form Advance is :

void v_form_adv(WORD handle);

9.15.2 Purpose

This function is provided by VDI printer drivers, and causes the printer to
advance to a new page, without clearing the printer display list (the printer
output which has not yet been sent to the printer). This function may also be
used for metafiles, where it will cause a metafile item to be written. It will have
no effect on screen devices.

9.15.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the printer or Metafile device.

9.15.4 Example

WORD printer;

v_form_adv(printer); /* Advance printer one page */

Section 9 - VDI Escape Functions VDI-195

9.16 Output Window to Printer v_output_window

This can be used to output a specified portion of the printer display buffer to
the printer.

9.16.1 Definition

The Prospero C definition of Output Window to Printer is :

void v_output_window(WORD handle, WORD xyarray[4;

9.16.2 Purpose

This function is provided by VDI printer drivers, and causes the specified
rectangle of the printer output buffer to be output to the printer. The effect is
similar to vupdwk (section 3.4), except that a portion of the picture can be
specified.

This function will not cause adjacent portions of the picture to be precisely
aligned - theywill abutwithin a resolution of one printerhead passheight.

rThis function has no effect on screen devices. Metafile devices will output a
metafile item to the buffer.

I

I

I

I

I

9.16.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device.

xyarray WORD[4] Output rectangle

The rectangle defining the area of the picture to
be output to the printer. This is in the standard
VDI rectangle format, where the elements give
the coordinates of two diagonally opposite
comers of the rectangle.

f VDI-196 Section 9- VDI Escape Functions
9.16.4 Example

WORD printer;

WORD rect[] = { 0, 0, 400, 150};

/* Output top of picture */
v output_window(printer, rect)

I

I

I

I

I

I

I

I

I

Section 9 - VDI Escape Functions VDI-197

9.17 Clear Printer Display List v_clear_disp_list

This can be used to clear the printer display buffer.

9.17.1 Definition

The Prospero C definition of Clear Printer Display List is :

void v_clear_disp_list(WORD handle);

9.17.2 Purpose

This function is provided by VDI printerdrivers, and causes the printeroutput
buffer to be cleared. The effect is similar to v_clrwk (section 3.3), but does
not cause the printer to advance to a new page. This function has no effect on
screen devices. Metafile devices will output a metafile item to the buffer.

9.17.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the printer device.

9.17.4 Example

WORD printer;

v_clear_disp_list(printer) ;/* Clear printer buffer */

"7" VDI-198 Section 9- VDI Escape Functions
9.18 Output Bit Image File v_bit_image_l

v_bit_image_2

This function is used to process a bit image file. The function and its binding
have been substantially alteredbetween GEM versions 1.1 and 2.0.

9.18.1 Definition

The Prospero C definitions of Output Bit ImageFile are :

GEM version 1.1 :-

void v_bit_image_l(WORD handle, const char *filename,
WORD aspect, WORD scaling,
WORD num_pts, WORD xyarray[4]);

GEM version 2.0 :-

void v_bit_image_2(WORD handle, const char *filename,
WORD aspectflg, WORD xscale,
WORD yscale, WORD h_align,
WORD v_align, WORD xyarray[4]);

9.18.2 Purpose

This function processes the named bit image file, and draws the processed
image on the specified device, which should be a printer or camera device, or a
metafile. Various forms of scaling and transformation may be applied to the
image in the file before it is output. The function hasbeen substantially altered
by Digital Research between GEM versions 1.1 and 2.0, and therefore two
versions of the binding are supplied for the two versions of GEM.

I

[

I

I

I

I

I

I

I

I

I

I

Section 9 - VDI Escape Functions

9.18.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

VDI-199

handle WORD Device handle

The handle of the device to which the bit image
is to be output.

filename const char* Bit image file name

The filename and directory specification of the
bit image file. Bit image files have an extension
.IMG.

Aspect ratio treatment

In GEM version 1.1, the image aspect ratio may
be processed in one of three ways, according to
the value of this parameter :-

0 - ignore aspect ratio
1 - honor pixel aspect ratio (e.g. circles

remain round).
2 - honor page aspect ratio, so full page in

bit image space maps to a full page on
the output device.

Scaling treatment

In GEM version 1.1, the image may be scaled in
two manners as follows:-

0- uniform scaling in x and y axes - the
image may not completely occupy the
specified output rectangle, but the
aspect ratio parameter will be obeyed.

1 - separate scaling in x and y axes - the
image will completely fill the specified
output rectangle, but the aspect ratio
parameter will be ignored.

This parameter is only relevant when the value
of the parameter numpts is 2, indicating that
both upper left and lower right corners of the
output rectangle have been specified.

aspect WORD

scaling WORD

"7 VDI-200 Section 9 - VDI Escape Functions

num pts WORD Number of points specified

In GEM version 1.1, the rectangle to which the
image is to be output may be specified in one of
3 ways :-

0- use upper left and lower right points
from image file header. The points
specified in the parameter xyarray
are not used.

1 - use upper left point specified in
xyarray[0] andxyarray[1] and
lower right point specified in image
file header. The values of

xyarray [2] and xyarray [3] are
not used.

2- use upper left and lower right points
from the parameter xyarray. The
aspect parameter is not relevant, but
the scaling parameter is.

aspectflg WORD

xscale

yscale

WORD

WORD

Aspect ratio flag

In GEM version 2.0, either the aspect ratio may
be ignored (aspectflg = 1) or the pixel
aspect ratio may be preserved (aspectflg =
0).

X axis scaling flag
Y axis scaling flag

In GEM version 2.0, the scaling of the two axes
may be specified separately as either fractional
(scale = 0), or integer (scale = 1).
Fractional scaling will cause the image to
precisely fill the specified rectangle, while
integer scaling may not - the image size can
only be scaled in integer multiples. Note that
some combinations of the scaling and aspect
ratio parameters may cause the scaled image to
exceed the size of the scaling rectangle. In this
case the bit image will be clipped to the scaling
rectangle.

I

I

I

I

I

I

I

I

I

I

Section 9 - VDI Escape Functions VDI-201

h_align
v_align

xyarray

WORD

WORD

WORD[4]

9.18.4 Example

WORD printer;
char *imagefile;
WORD rect[4];

Horizontal alignment
Vertical alignment

In GEM version 2.0, if the scaled image does
not precisely fit in the scaling rectangle, the
alignment within the rectangle may be specified
using these parameters :-

0- left/top alignment
1 - centre alignment
2- right/bottom alignment

Scaling rectangle

The rectangle to which the scaled image is to be
output, in the standard GEM VDI format. In
GEM version 1.1, the number (0, 1, or 2) of
points in this array which are actually used is
specified by the parameter num pts.

/* GEM 1.1 version */

/* Output image, scaling and rect irrelevant as */
/* num_pts is zero */
v_bit_image_l(printer, imagefile, 0, 0, 0, rect);

/* GEM 2.0 version */

rect[0] = 0;

rect [1] = 0;

rect [2] = 200;

rect[3] = 400;

/* Output image, no scaling */
v_bit_image_2(printer, imagefile, 0, 1, 1,

0, 0, rect) ;

"7 VDI-202 Section 9 - VDI Escape Functions

9.19 Inquire Printer Scan Heights vq scan

This function is used to discover the printer head scan height. It is not provided
in GEM version 1.1.

9.19.1 Definition

The Prospero C definition of Inquire Printer Scan Heights is :

void vq_scan(WORD handle, WORD *g_height,
WORD *g_slices, WORD *a_height,
WORD *a_slices, WORD *factor);

9.19.2 Purpose

This function returns information about the height of each printer head scan,
in both alpha and graphics mode. This function is not provided in GEM
version 1.1.

9.19.3 Parameters

Parameter Type of
name parameter

handle WORD

g height WORD *

gslices WORD *

a height WORD *

Parameter description
Function of parameter

Device handle

The handle of the printer device.

Graphics mode scan height

Points to an object which returns the height of a
graphics mode printer scan, in scaled pixels.

Graphics mode passes per page

Points to an object which returns the number of
printer head passes required to output an entire
page, in graphics mode.

Alpha mode scan height

Points to an object which returns the height of
an alpha mode printer scan, in scaled pixels.

I

I

Section 9 - VDI Escape Functions VDI-203

a slices WORD *

factor WORD

Alpha mode passes per page

Points to an object which returns the number of
printer head passes required to output an entire
page, in alpha mode.

Division factor

Points to an object which returns a value by
which the scan heights returned in g_height
and a_height should be divided, so that non-
integral scan heights may be returned.

9.19.4 Example

WORD printer;
WORD gh, gs, ah, as, factor;

vq_scan(printer, &gh, Sgs, &ah, Sas, Sfactor);
if (gh < 10*factor)

{ /* graphic scan height less than 10 */

VDI-204 Section 9 - VDI Escape Functions

9.20 Output Printer Alpha Text v_alpha_text

This function is used to output a string of text to the printer. This function is
not provided in GEM version 1.1.

9.20.1 Definition

The Prospero C definition of Output Printer Alpha Text is :

void v_alpha_text(WORD handle, const char *astring);

9.20.2 Purpose

This function outputs the specified text to the printer at the current printer
head position. A printer font must have been loaded before this is used - see
vst_load_fonts in section 3.5. Characters are output as specified, except
for the following special codes :-

Form Feed (M2') has the same effect as calling v_form_adv (section9.15)

DC2 ('\18') followed by a character in the range 0 to 5 modifies the style as
follows :-

0 - begin boldface
1 - end boldface

2 - begin italics
3 - end italics

4 - begin underline
5 - end underline

This function is not provided in GEM version 1.1.

" Section 9 - VDI Escape Functions VDI-205
9.20.3 Parameters

I

I

I

I

I

I

I

I

I

I

I

I

I

Parameter Type of Parameter description
name parameter Function of parameter

handle WORD Device handle

The handle of the printer device.

astring constchar* Output string

The string of alpha text to be output.

9.20.4 Example

WORD printer;

v_alpha_text(printer, "This goes to the printer");

"7 VDI-206
9.21 Select Palette

Parameter Type of
name parameter

handle WORD

palette WORD

Section 9 - VDI Escape Functions

vs_palette

This function is used to select one of the two available palettes on the IBM
medium resolution video display.

9.21.1 Definition

The Prospero C definition of Select Palette is :

WORD vs_palette(WORD handle, WORD palette);

9.21.2 Purpose

This function is specific to the IBM medium resolution screen, and selects one
of the two palettes, so that either red, green andbrown or cyan, magenta and
white are available.

9.21.3 Parameters

Parameter description
Function of parameter

Device handle

The handle of the screen device.

Palette selected

The palette required :-

0 - red, green, brown palette (default)
1 - cyan, magenta, white palette

9.21.4 Function Result

The function returns the palette selected (0 or 1).

9.21.5 Example

WORD screen;

/* Select cyan palette */
vs palette(screen, 1);

I

I

1

I

I

I

I

I

Section 9 - VDI Escape Functions VDI-207

9.22 Generate Tone v_sound

This function is used to generate a tone. It is not available in GEM version 1.1.

9.22.1 Definition

The Prospero C definition of Generate Tone is :

void v_sound(WORD handle, WORD frequency,
WORD duration);

9.22.2 Purpose

This function generates a tone of the specified frequency for the specified
duration. Tone generation may be suppressed by the function vs_mute (see
section 9.23). This function is not provided in GEM version 1.1.

9.22.3 Parameters

Parameter Type of
name parameter

handle WORD

frequency WORD

duration WORD

9.22.4 Example

WORD screen;

int i;

Parameter description
Function of parameter

Device handle

The handle of the device.

Tone frequency

The frequency of the required tone, in Hertz.

Tone duration

The duration of the required tone, in timer
ticks.

for (i = 50; i <= 400; i+^

v sound(screen, i, 10); /* Glissando */

"7 VDI-208 Section 9 - VDI Escape Functions

9.23 Set/Clear Muting Flag vs mute

This function is used enable or disable tone generation, or to discover the
current setting of the muting flag. It is not available in GEM version 1.1.

9.23.1 Definition

The Prospero C definition of Set/Clear Muting Flag is :

WORD vs_mute(WORD handle, WORD action);

9.23.2 Purpose

This function allows an application to modify or discover the state of the
muting flag. When the muting flag is set, tone generation by the v_sound
function (section 9.22) is disabled. This function is not provided in GEM
version 1.1.

9.23.3 Parameters

Parameter Type of
name parameter

handle WORD

action WORD

Parameter description
Function of parameter

Device handle

The handle of the device.

Action to perform

This parameter indicates whether the muting
flag is to be set, cleared, or returned unmodified
as follows :-

-1 - Return state of muting flag
unmodified

0 - Enable tone generation (muting off)
1 - Disable tone generation (muting on)

9.23.4 Function Result

The function returns the state of the muting flag. A value of zero indicates that
muting is off, and tones can be generated. Any other value means muting is on.

I

I

!

I

I

I

I

!

i

Section 9 - VDI Escape Functions VDI-209

9.23.5 Example

WORD screen;

if (vs_mute(screen, -1) == 0)
{ /* Tone generation enabled */
/* Make some noise */

~7 VDI-210 Section 9- VDI Escape Functions
9.24 Set Tablet Resolution vt_resolution

vt_axis

GEM version 2.0 includes a number of functions for use with a device driving
a graphics tablet, described here and in the following sections. These functions
are used to set the resolution of a graphics tablet. They are not available in
GEM version 1.1.

9.24.1 Definition

The Prospero C definitions of Set Tablet Resolution are :

void vt_resolution(WORD handle, WORD xres, WORD yres,
WORD *xset, WORD *yset);

void vt_axis(WORD handle, WORD xres, WORD yres,
WORD *xset, WORD *yset);

9.24.2 Purpose

These functions allow an application to set the horizontal and vertical
resolutions of an attached graphic tablet in either lines per inch or lines per
axis. The resolutions are set to the nearest available values, and the actual
values set are returned. These functions are not provided in GEM version 1.1.

Section 9 - VDI Escape Functions VDI-211

9.24.3 Parameters

Parameter Type of
name parameter

handle

xres

yres

xset

yset

WORD

WORD

WORD

WORD *

WORD *

9.24.4 Example

WORD tablet;

WORD xs, ys;

Parameter description
Function of parameter

Device handle

The handle of the device to which the tablet is

attached.

X axis resolution requested
Y axis resolution requested

The requested values of the x and y axis
resolutions, in lines per inch (for
vt_resolution) or lines per axis (for
vt_axis).

X axis resolution selected

Y axis resolution selected

These parameters point to objects which return
the values of the x and y axis resolutions actually
selected in lines per inch (for
vt_resolution) or lines per axis (for
vt_axis).

/* Request 100 lines per inch resolution */
vt_resolution(tablet, 100, 100, &xs, &ys);
if ((xs < 50) || (ys < 50))

/* Tablet has insufficient resolution */

"7 VDI-212 Section 9 - VDI Escape Functions

9.25 Set Tablet Origin vt origin

This function is used to set the origin of a graphics tablet. It is not available in
GEM version 1.1.

9.25.1 Definition

The Prospero C definition of Set Tablet Origin is :

void vt^origin(WORD handle,
WORD xorigin, WORD yorigin);

9.25.2 Purpose

This function allows an application to set the x and y coordinates of the tablet
origin, in lines (tablet units). It is not provided in GEM version 1.1.

9.25.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the device to which the tablet is

attached.

xorigin WORD
yorigin WORD

Origin X coordinate
Origin Y coordinate

The coordinates of the required origin. These
are in tablet units as set by the
vt_resolution or vt_axis rather than the
NDC or Raster device coordinates.

9.25.4 Example

WORD tablet;

WORD xs, ys;

/* Select 100 lines per inch */
vt_resolution(tablet, 100, 100, Sxs, &ys);
vt origin(tablet, xs, 0); /* Move origin by 1 inch */

I

I

I

I

I

Section 9 - VDI Escape Functions VDI-213

9.26 Inquire Tablet Dimensions vq tdimensions

This function is used to discover the dimensions of a graphics tablet. It is not
available in GEM version 1.1.

9.26.1 Definition

The Prospero C definition of Inquire Tablet Dimensions is :

void vq_tdimensions(WORD handle,
WORD *xsize, WORD *ysize);

9.26.2 Purpose

This function allows an application to discover the x and y dimensions of the
tablet in tenths of inches. It is not provided in GEM version 1.1.

9.26.3 Parameters

Parameter Type of
name parameter

handle

xsize

ysize

WORD

WORD *

WORD *

Parameter description
Function of parameter

Device handle

The handle of the device to which the tablet is
attached.

Tablet X dimension

Tablet Y dimension

These parameters point to objects which return
the dimensions of the tablet surface, in tenths of
inches.

9.26.4 Example

WORD tablet;

WORD xs, ys;

vq_tdimensions(tablet, &xs, Sys);
/* Get tablet size */

if ((xs < 100) || (ys < 100))
{
/* Tablet less than 10x10 inches*/

"7 VDI-214 Section 9 - VDI Escape Functions

9.27 Set Tablet Alignment vt alignment

This function is used to establish an alignment between the coordinate axes of
the tablet, and those of a drawing to be traced. It is not available in GEM
version 1.1.

9.27.1 Definition

The Prospero C definition of Set Tablet Alignment is :

void vt alignment(WORD handle, WORD dx, WORD dy);

9.27.2 Purpose

This function can be used to rotate the axes used by the tablet, for example to
make them correspond precisely to those of a drawing about to be traced. The
line along which the axis is to lie is specified by giving the x and y components
of its slope in the current tablet coordinate system. These will typically be
obtained by asking the user to select on the tablet the two end points of the
desired axis. If these points are (xl, yl) and (x2, y2), the values to be passed in
dx and dy to make this line correspond to an axis are (x2-xl) and (y2-yl).

This function is not provided in GEM version 1.1.

9.27.3 Parameters

Parameter Type of
name parameter

handle

dx

dy

WORD

WORD
WORD

Parameter description
Function of parameter

Device handle

The handle of the device to which the tablet is

attached.

X element of slope
Y element of slope

These parameters give the signed length of the x
or y component of the slope (i.e. of the sides of
the right angled triangle whose hypotenuse lies
along the required axis).

Section 9 - VDI Escape Functions VDI-215

9.27.4 Example

WORD tablet;

WORD pi[2], p2[2];

/* Get end points of axis from user in pi, p2 */
vt_alignment(handle, p2[0] - pl[0], p2[l] - pl[l]);

* VDI-216 Section 9 - VDI Escape Functions

9.28 Select Camera Film Type vsp_film

GEM versions 1.1 and 2.0 provide a number of escapes for use with a film
recorder device, though the escapes provided have completely changed
between the two releases of GEM. The film recorder functions provided in
GEM version 2.0 are described in sections 9.28 to 9.30, while those for GEM
version 1.1 are described in sections 9.31 to 9.35.

This function is used to select the film type and exposure for a camera device
under GEM version 2.0.

9.28.1 Definition

The Prospero C definition of Select Camera Film Type is :

void vsp_film(WORD handle, WORD index, WORD lightness);

9.28.2 Purpose

This function is used in GEM version 2.0 to select the film type and exposure
for film recorder devices.

9.28.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

handle WORD Device handle

The handle of the film recorder device.

index WORD Film index

The index of the film to be used. This should be

between one and the number of films available.

The function vqp_filmname (section 9.29)
can be used to find the name of the film

associated with each index.

I

Section 9 - VDI Escape Functions VDI-217

lightness WORD

9.28.4 Example

WORD camera;

Exposure index

An integer in the range -3 to 3, giving the
aperture to be used in units of a third of an f-
stop. A value of -3 results in half the normal
exposure, while +3 will result in double the
normal exposure.

/* Select film index 1, normal exposure */
vsp_film(camera, 1, 0);

VDI-218 Section 9 - VDI Escape Functions

9.29 Inquire Camera Film Name vqp_filmname

This function is used to return the name of the film associated with the given
film index for a camera device. It is not available in GEM version 1.1, which
has different camera functions.

9.29.1 Definition

The Prospero C definition of Inquire Camera Film Name is :

WORD vqp_filmname(WORD handle, WORD index,
char name[]);

9.29.2 Purpose

This function is used in GEM version 2.0 to discover the name of a specified
film index in a camera device.

9.29.3 Parameters

Parameter Type of
name parameter

handle WORD

index WORD

char[]

Parameter description
Function of parameter

Device handle

The handle of the film recorder device.

Film index

The index of the film whose name is to be
returned.

Film name

An array to receive the name of the specified
film. This should have space for at least 25
characters, including the null terminating
character.

I

I

I

I

I

I

I

I

I

I

Section 9 - VDI Escape Functions VDI-219

9.29.4 Function Result

This function returns non-zero if the film index was valid and a valid film

name has been returned, otherwise zero.

9.29.5 Example

WORD camera;

char name[25];

if (vqp_filmname(camera, 1, name))
/* Film index 1 valid, so use it */
vsp_film(camera, 1, 0);

VDI-220 Section 9 - VDI Escape Functions

9.30 Disable or Enable Film Exposure vsc expose

This function is used to disable or enable exposure on camera devices which
support previewing of the image to be exposed. It is not available in GEM
version 1.1, which has different camera functions.

9.30.1 Definition

The Prospero C definition of Disable Or Enable Film Exposure is :

void vsc_expose(WORD handle, WORD state);

9.30.2 Purpose

This function is used in GEM version 2.0 to enable or disable exposure of an
image so that the image can be previewed before the exposure is made. This
function only applies to camera devices which support previewing of images.

9.30.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle

state

WORD Device handle

The handle of the film recorder device.

WORD Exposure flag

If this parameter is 1, exposure of images is
enabled. This is the default state. If this
parameter is 0, exposure is disabled, and
previewing of the image may be used.

9.30.4 Example

WORD camera;

/* Disable exposure for preview */
vsc expose(camera, 0);

I

I

I

I

I

I

I

I

I

I

Section 9 - VDI Escape Functions VDI-221

9.31 Inquire Film Types vqp films

The functions described in sections 9.31 to 9.35 are the GEM version 1.1
functions for use with the Polaroid Palette film recorder device. They have
been replaced under GEM version 2.0 with the functions described in sections
9.28 to 9.30.

This function is used to return the names of the 5 films which the camera
device is currently capable of exposing. This function is only available in GEM
version 1.1 - in GEM version 2.0 it has been superseded by the function
vqp_f ilmname (section 9.29).

9.31.1 Definition

The Prospero C definition of Inquire Film Types is :

void vqp_films(WORD handle,char filmnames[125]);

9.31.2 Purpose

This function is used in GEM version 1.1 to return the names of the five films
with which the camera is currently loaded.

9.31.3 Parameters

Parameter Type of
name parameter

handle WORD

filmnames char[125]

Parameter description
Function of parameter

Device handle

The handle of the film recorder device.

Film names

This parameter returns the names of the five
films currently loaded in the camera device.

7 VDI-222 Section 9- VDI Escape Functions
9.31.4 Example

WORD camera;

char names[5][25];
char * requiredfilm = "Kodachrome ASA 100

/* e.g. */

int i;

vqp_films(camera, names); /* Get film names */
i = 0;

while (i < 5)
if (strcmp (names[i], requiredfilm) == 0)
/* Select that film, and set i to 5 to stop loop */
else

i++;

I

[

I

[

I

[

I

I

I

I

I

I

I

I

Section 9 - VDI Escape Functions VDI-223

9.32 Inquire and Set Palette Driver State vqp_state
vsp_state

These functions are used to return or alter the current state of the Polaroid
Palette film recorder. They are only available in GEM version 1.1.

9.32.1 Definition

The Prospero C definitions of Inquire Film Types State are :

void vqp_state(WORD handle, WORD *port,
WORD *film_num, WORD *lightness,
WORD *interlace, WORD *planes,
WORD indexes[16]);

void vsp_state(WORD handle, WORD port,
WORD film_num, WORD lightness,
WORD interlace, WORD planes,
WORD indexes [16]);

9.32.2 Purpose

These functions are used in GEM version 1.1 to set or return information
about the current state of the film recorder. Normally, an application will
obtain the current state of the driver using vqp_state, modify one or more
of the variables in which the state was returned, then pass the same variables to
vsp_state to alter the palette state. In GEM 2.0 the function vsp_f ilm is
used to perform some of the function of vsp_state - see section 9.28.

"7 VDI-224
9.32.3 Parameters

Parameter Type of
name parameter

handle

port

WORD

WORD

WORD *

film_num WORD
WORD *

lightness WORD
WORD *

interlace WORD
WORD *

planes WORD

WORD *

Section 9 - VDI Escape Functions

Parameter description
Function of parameter

Device handle

The handle of the film recorder device.

Port number

This parameter returns or sets the number of
the communications port to which the recorder
is connected. A value of zero indicates the first

communications port, and so on.

Film number

This parameter returns or sets the film to be
used, in the range 0 to the number of films
available. See the function vqp_f ilms for how
to discover what films are available.

Aperture control

This parameter returns or sets the lightness to
be used for exposing an image, in units of a
third of an f-stop. A value of 0 indicates normal
exposure, a value of 3 will double the exposure,
and -3 will halve it.

Interlace flag

This parameter returns or sets the state of the
interlace flag. If interlace is enabled
(interlace = 1), the picture will require
twice as much memory to store.

Number of planes

This parameter returns or sets the number of
planes to be used - this should be in the range 1
to 4, giving 2, 4, 8, or 16 colors.

I

I

I

I

I

I

I

I

I

I

I

I

Section 9 - VDI Escape Functions VDI-225

indexes WORD[16] Color indices

9.32.4 Example

WORD camera;

WORD port, index,

WORD interlace;

WORD colors[16] ;

This parameter returns or sets the color indices
for up to 8 colors. Each color is referred to by a
pair of characters, a letter in the range 'A' to 'H'
and a number in the range T to '9', specifying a
column and row in the film's color table. The
parameter is declared as an array[16] of
WORD; each of the 8 pairs of words
corresponds to a single color. The ASCII codes
of the relevant letters should be placed in the
WORD elements.

aperture, planes,

/* Get palette state */
vqp_state(camera, sport, Sindex, Saperture,

Sinterlace, Splanes, colors);
/* Select a suitable film */
if (index > 3) index = 1;

/* Set new palette state */
vsp_state(camera, port, index, aperture, interlace,

planes, colors) ;

~7 VDI-226 Section 9 - VDI Escape Functions

9.33 Save Palette Driver State vsp save

This function is used to save to disk the current state of the Polaroid Palette
film recorder, and thus cause it to be the default state in future. It is only
available in GEM version 1.1.

9.33.1 Definition

The ProsperoC definition of Save Palette Driver State is :

void vsp save(WORD handle);

9.33.2 Purpose

This function is used in GEM version 1.1 to save the current state of the film
recorder as the default state. There is no equivalent function in GEM version
2.0.

9.33.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the film recorder device.

9.33.4 Example

WORD camera;

/* Select a palette state */
/* Make it the default state */

vsp save(camera);

I

Section 9 - VDI Escape Functions VDI-227

9.34 Suppress Palette Messages vsp_message

This function is used to suppress the output of messages to the screen by the
film recorder device. It is only available in GEM version 1.1.

9.34.1 Definition

The Prospero C definition of Suppress Palette Messages is :

void vsp_message(WORD handle);

I

I

I

9.34.2 Purpose

This function is used in GEM version 1.1 to suppress the output of messages
directly to the screen by the film recorder. If this is used, palette messages may
be checked for (and appropriate action taken using the function vqp_error
(section 9.35). There is no equivalent function in GEM version 2.0.

9.34.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD Device handle

The handle of the film recorder device.

9.34.4 Example

WORD camera;

vsp_message(camera); /* Suppress message output */

* VDI-228 Section 9 - VDI Escape Functions

9.35 Palette Error Inquire vqp_error

This function is used to discover whether the film recorder device has any
errors or user prompts pending. It is only available in GEM version 1.1.

9.35.1 Definition

The Prospero C definition of Palette Error Inquire is :

WORD vqp_error(WORD handle);

9.35.2 Purpose

This function is used in GEM version 1.1 to discover whether any errors have
been detected by the film recorder, or whether it has any user prompts
pending. It does not clear the error or prompt condition, so that unless
vsp_message has been used (see section 9.34) the relevant message will still
be output to the screen. However it is more usual to use this function when
normal error reporting has been disabled by vspmessage, so that an
application can inform the user of any errors or any action required. There is
no equivalent function in GEM version 2.0.

9.35.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter-

handle WORD Device handle

The handle of the film recorder device.

I

I

I

[

I

I

I

Section 9 - VDI Escape Functions VDI-229

9.35.4 Function Result

The function returns a WORD indicating which error or prompt is being
reported as follows :-

0 - no error

1 - open dark slide for print film
2 - no port at location specified
3 - palette not found at specified port
4 - video cable disconnected

5 - operating system does not allow memory allocation
6 - not enough memory to allocate buffer
7 - memory not de-allocated
8 - driver file not found

9 - driver file is incorrect type
10 - prompt user to process print film

9.35.5 Example

WORD camera;

WORD error;

error = vqp_error(camera);/* check for errors etc. */
if (error != 0)

switch (error) {

~7 VDI-230 Section 9 - VDI Escape Functions

9.36 Update Metafile Extents v_meta_extents

This function may be used to set the extents information in a metafile header.

9.36.1 Definition

The Prospero C definition of Update Metafile Extents is :

void v_meta_extents(WORD handle,
WORD min_x, WORD min_y,
WORD max_x, WORD max_y);

9.36.2 Purpose

This function is used to set the extents information in a metafile header. This
can then be used by an application loading the metafile as an indication of the
minimum rectangle that encloses all the graphics primitives output to the
metafile. If this function is not used, all coordinates of the extents record will
be zero.

9.36.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

handle WORD Device handle

The handle of the metafile device.

min x WORD Minimum X coordinate
min y WORD Minimum Y coordinate
max x WORD Maximum X coordinate
max y WORD Maximum Y coordinate

9.36.4 Example

WORD metafile;

The coordinates defining the bounding
rectangle enclosing all elements in the metafile.
Metafile devices have coordinates in the range 0
to 32767 in both NDC and RC modes, although
they have different origins.

v_meta__extents (metafile, 0, 0, 1000, 1000);

Section 9- VDI Escape Functions VDI-231

9.37 Write Metafile Item v_write_meta
This function may be used write a user defined item to a metafile.

9.37.1 Definition

The Prospero C definition of Write Metafile Item is :

void v_write_meta(WORD handle, WORD num_intin,
WORD intin[], WORD num_ptsin,
WORD ptsin []);

9.37.2 Purpose

This function isused to write the contents of the int in and pt s in arrays (cf.
section 1) to a metafile, with an op-code identifying the item as a user defined
item. The sub op-code in intin [0] should contain a value 101 or higher
identifying the type of user defined item.

9.37.3 Parameters

Parameter Type of
name parameter

handle WORD

num intin WORD

Parameter description
Function of parameter

Device handle

The handle of the metafile device.

Size of intin array

The number of elements in the specified intin
array. There should always be at least one point,
as intin [0] should hold the metafile sub-
opcode.

VDI-232

intin WORD]]

num_ptsin WORD

ptsin WORD]]

Section 9 - VDI Escape Functions

Intin array

A pointer to the intin array, which contains
num_intin elements of type WORD to be
written to the metafile. The first element
int in [0] should always contain the metafile
sub-opcode in the range 101 and above,
identifying the type of this user defined metafile
item. Other elements contain user defined
WORD values describing the item.

Size of ptsin array

The number of coordinate pairs in the specified
ptsin array.

Ptsin array

A pointer to the ptsin array, which contains
num_ptsin * 2 elements of type WORD to
be written to the metafile. No values will be
written if the value of num ptsin is zero. The
elements contain user defined coordinate pairs
describing the item.

9.37.4 Example

WORD metafile;

WORD intin [5];

WORD ptsin [4]; /* 2 coordinate pairs */

/* Set up intin and ptsin arrays */
intin[0] = 101;

/* Sub opcode of this metafile item */
v write meta(metafile, 5, intin, 2, ptsin);

Section 9 - VDI Escape Functions VDI-233

9.38 Change GEM VDI Filename vm_filename
This functionmay be used change the name of a metafiledevice.

9.38.1 Definition

The Prospero C definition of ChangeGEM VDI Filenameis :

void vm_filename(WORD handle, const char *filename);

9.38.2 Purpose

This function is used to change the filename and/or pathname of the metafile
device. It must be called immediately after opening the metafile using
v_opnwk (section 3.1), or it will have no effect. Any open metafiles will be
closed and deleted. Metafiles alwayshave an extension .GEM. If this function
is not used, the metafile name will be GEMFILE.GEM.

9.38.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

handle WORD

9.38.4 Example

WORD metafile;

Device handle

The handle of the metafile device.

filename constchar* Metafile path and file name

The pathname and filename to be used for the
metafile.

vm_filename(metafile, "C:\MYMETA")

~7 VDI-234 Section 10 - Index of Functions

10 INDEX OF FUNCTIONS

Binding name Function Section Page

v alpha text Output Printer Alpha Text 9.20 204

v arc Output Arc 4.9 42

v bar Output Bar 4.8 40

v_bit_image_l Output Bit Image File (version 1.1) 9.18 198

v bit image_2 Output Bit Image File (version 2.0) 9.18 198

v cellarray Output Cell Array 4.5 33

v circle Output Circle 4.10 44

v_clear_disp_list Clear Printer Display List 9.17 197

v_clrwk Clear Workstation 3.3 15

v clsvwk Close Virtual Workstation 3.2 13

v clswk Close Workstation 3.2 13

v contourfill Contour Fill 4.6 36

v curdown Move Alpha Cursor Down 9.4 183

v curhome Home Alpha Cursor 9.5 184

v curleft Move Alpha Cursor Left 9.4 183

v curright Move Alpha Cursor Right 9.4 183

v curtext Output Alpha Text 9.9 188

v curup Move Alpha Cursor Up 9.4 183

v dspcur Place Graphic Cursor 9.14 193

veeoi Erase to End of Alpha Line 9.7 186

v eeos Erase to End of Alpha Screen 9.6 185

v_ellarc Output Elliptical Arc 4.11 46

v_ellipse Output Ellipse 4.12 48

v ellpie Output Elliptical Pieslice 4.11 46

v enter cur Enter Alpha Mode 9.3 182

v exit_cur Exit Alpha Mode 9.2 181

v fillarea Output Filled Area 4.4 31

v form adv Form Advance 9.15 194

v get_pixel Get Pixel 6.4 113

v_gtext Output Text 4.3 29

v hardcopy Hardcopy 9.13 192

v hide c Hide Cursor 7.8 134

vjustified Output Justified Text 4.14 52

v meta extents Update Metafile Extents 9.36 230

v opnvwk Open Virtual Screen Workstation 3.1 7

v opnwk Open Workstation 3.1 7

v output window Output Window to Printer 9.16 195

v_pieslice Output Pieslice 4.9 42

v_pline Output Polyline 4.1 25

v pmarker Output Polymarker 4.2 27

v rbox Output Rounded Rectangle 4.13 50

v rfbox Output Filled Rounded Rectangle 4.13 50

v rmcur Remove Graphic Cursor 9.14 193

Section 10 -Index of Functions

Binding name Function

vrvoff

v_rvon

v_show_c
vsound

vupdwk
v_write_meta
vexbutv

vexcurv

vex_motv
vex_timv
vmfilename

vqcellarray
vq_chcells
vqcolor
vqcuraddress
vq_extnd
vq_key_s
vq_mouse

vq_scan

vq_tabstatus
vq_tdimensions
vqf_attributes
vqin_mode
vqlattributes
vqm_attributes
vqperror

vqpfilmname
vqpfilms
vqpstate

vqtattributes
vqt_extent
vqt_font_info
vqt_justified
vqt_name
vqt_width
vr_recfl
vr_trnfm
vrocpyfm
vrq_choice
vrqlocator
vrqstring
vrqvaluator
vrt_cpyfm
vsclip
vs_color

Reverse Video Off

Reverse Video On

Show Cursor

Generate Tone

Update Workstation
Write Metafile Item

Exchange Button Change Vector
Exchange Cursor Draw Vector
Exchange Mouse Travel Vector
Exchange Timer Vector
Change GEM VDI Filename
Inquire Cell Array
Inquire Alpha Character Cells
Inquire Color Representation
Inquire Alpha Cursor Address
Extended Inquire
Sample Keyboard State
Sample Mouse State
Inquire Printer Scan Heights
Inquire Tablet Status
Inquire Tablet Dimensions
Inquire Fill Attributes
Inquire Input Mode
Inquire Line Attributes
Inquire Marker Attributes
Palette Error Inquire
Inquire Camera Film Name
Inquire Film Types
Inquire Palette Driver State
Inquire Text Attributes
Inquire Text Extent
Inquire Font Info
Inquire Justified Graphic Text
Inquire Font Name and Index
Inquire Character Cell Width
Output Filled Rectangle
Transform Form

Copy Raster Opaque
Input Choice (request mode)
Input Locator (request mode)
Input String (request mode)
Input Valuator (request mode)
Copy Raster Transparent
Set Clipping Rectangle
Set Color Representation

VDI-235

Section Page

9.10 189

9.10 189

7.8 134

9.22 207

3.4 16

9.37 231

7.10 138

7.12 142

7.11 140

7.7 132

9.38 233

8.10 167

9.1 179

8.2 151

9.11 190

8.1 147

7.13 144

7.9 136

9.19 202

9.12 191

9.26 213

8.5 157

8.11 170

8.3 153

8.4 155

9.35 228

9.29 218

9.31 221

9.32 223

8.6 159

8.7 161

8.12 172

8.13 174

8.9 165

8.8 163

4.7 38

6.3 111

6.1 104

7.4 125

7.2 119

7.5 127

7.3 122

6.2 108

3.7 21

5.2 59

VDI-236 Section 10 -Index of Functions

Binding name Function

vs_curaddress
vs_mute
vs_palette
vsc_expose
vscform

vsf_color
vsfinterior

vsfperimeter
vsf_style
vsf_udpat
vsin_mode
vsl_color
vslends

vsl_type
vsl_udsty
vslwidth

vsm_choice
vsmcolor

vsmheight
vsmlocator

vsm_string
vsm_type
vsmvaluator

vsp_film
vspmessage

vsp_save

vsp_state
vstalignment
vstcolor

vst_effects
vstfont

vstjheight
vst_load_fonts
vst_point
vst_rotation
vst_unload_fonts
vswr_mode
vt_alignment
vtaxis

vtorigin
vt resolution

Set Alpha Cursor Address
Set/Clear Muting Flag
Select Palette

Disable or Enable Film Exposure
Set Mouse Form

Set Fill Color Index

Set Fill Interior Style
Set Fill Perimeter Visibility
Set Fill Style Index
Set User Defined Fill Pattern

Set Input Mode
Set Line Color

Set Line End Styles
Set Line Type
Set User Defined Line Style
Set Line Width

Input Choice (sample mode)
Set Marker Color

Set Marker Height
Input Locator (sample mode)
Input String (sample mode)
Set Marker Type
Input Valuator (sample mode)
Select Camera Film Type
Suppress Palette Messages
Save Palette Driver State

Set Palette Driver State

Set Graphic Text Alignment
Set Text Color

Set Text Effects

Select Character Font

Set Text Height
Load Fonts

Set Text Height
Set Character Baseline Vector

Unload Fonts

Set Writing Mode
Set Tablet Alignment
Set Tablet Resolution

Set Tablet Origin
Set Tablet Resolution

Section Page

9.8 187

9.23 208

9.21 206

9.30 220

7.6 130

5.19 96

5.17 91

5.20 98

5.18 93

5.21 100

7.1 117

5.6 67

5.7 69

5.3 61

5.4 63

5.5 65

7.4 125

5.10 75

5.9 73

7.2 119

7.5 127

5.8 71

7.3 122

9.28 216

9.34 227

9.33 226

9.32 223

5.16 88

5.14 84

5.15 86

5.13 82

5.11 77

3.5 17

5.11 77

5.12 80

3.6 19

5.1 56

9.27 214

9.24 210

9.25 212

9.24 210

	Front Cover
	Title Page
	Copyright
	Contents
	1: Introduction To GEM VDI
	2: Using GEM VDI
	3: VDI Control Functions
	4: VDI Output Functions
	5: VDI Attribute Functions
	6: VDI Raster Functions
	7: VDI Input Functions
	8: VDI Inquire Functions
	9: VDI Escapes
	10: Index Of Functions
	Back Cover

